The Interpretation Manual of European Union Habitats - EUR28 is a scientific reference document. It is based on the version for EUR15, which was adopted by the Habitats Committee on 4. October 1999 and consolidated with the new and amended habitat types for the 10 accession countries as adopted by the Habitats Committee on 14 March 2002. A small amendment to habitat type 91D0 was adopted by the Habitats Committee in its meeting on 14th October 2003. The Habitats Committee at its meeting on 13 April 2007 adopted additional changes for the accession of Bulgaria and Romania, and for the marine habitats, followed the descriptions given in “Guidelines for the establishment of the Natura 2000 network in the marine environment. Application of the Habitats and Birds Directives” published in May 2007 by the Commission services. Amendments for the accession of Croatia were adopted by the Habitats Committee on 4 October, 2012. The April 2013 version consolidates the changes for Croatia in the text and corrects the references to EUNIS codes for three marine habitat types.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>WHY THIS MANUAL?</td>
<td>3</td>
</tr>
<tr>
<td>Historical Review</td>
<td>3</td>
</tr>
<tr>
<td>The Manual</td>
<td>4</td>
</tr>
<tr>
<td>THE EUR15 VERSION</td>
<td>5</td>
</tr>
<tr>
<td>THE EUR25 VERSION</td>
<td>5</td>
</tr>
<tr>
<td>THE EUR27 VERSION</td>
<td>6</td>
</tr>
<tr>
<td>THE EUR28 VERSION</td>
<td>6</td>
</tr>
<tr>
<td>Explanatory Notes</td>
<td>7</td>
</tr>
<tr>
<td>Coastal and Halophytic Habitats</td>
<td>7</td>
</tr>
<tr>
<td>Coastal and Halophytic Habitats</td>
<td>8</td>
</tr>
<tr>
<td>Open Sea and Tidal Areas</td>
<td>8</td>
</tr>
<tr>
<td>Sea Cliffs and Shingle or Stony Beaches</td>
<td>17</td>
</tr>
<tr>
<td>Atlantic and Continental Salt Marshes and Salt Meadows</td>
<td>20</td>
</tr>
<tr>
<td>Mediterranean and Thermo-Atlantic Saltmarshes and Salt Meadows</td>
<td>22</td>
</tr>
<tr>
<td>Salt and Gypsum Inland Steppes</td>
<td>24</td>
</tr>
<tr>
<td>Boreal Baltic Archipelago, Coastal and Landupheaval Areas</td>
<td>26</td>
</tr>
<tr>
<td>Coastal Sand Dunes and Inland Dunes</td>
<td>29</td>
</tr>
<tr>
<td>Sea Dunes of the Atlantic, North Sea and Baltic Coasts</td>
<td>29</td>
</tr>
<tr>
<td>Sea Dunes of the Mediterranean Coast</td>
<td>35</td>
</tr>
<tr>
<td>Inland Dunes, Old and Decalcified</td>
<td>37</td>
</tr>
<tr>
<td>Freshwater Habitats</td>
<td>38</td>
</tr>
<tr>
<td>Standing Water</td>
<td>38</td>
</tr>
<tr>
<td>Running Water</td>
<td>44</td>
</tr>
<tr>
<td>Temperate Heath and Scrub</td>
<td>48</td>
</tr>
<tr>
<td>Sclerophyllous Scrub (Matorral)</td>
<td>58</td>
</tr>
<tr>
<td>Sub-Mediterranean and Temperate Scrub</td>
<td>58</td>
</tr>
<tr>
<td>Mediterranean Arborescent Matorral</td>
<td>60</td>
</tr>
<tr>
<td>Thermo-Mediterranean and Pre-steppe Brush</td>
<td>61</td>
</tr>
<tr>
<td>Phrygana</td>
<td>63</td>
</tr>
<tr>
<td>Natural and Semi-Natural Grassland Formations</td>
<td>65</td>
</tr>
<tr>
<td>Natural Grasslands</td>
<td>65</td>
</tr>
<tr>
<td>Semi-Natural Dry Grasslands and Scrubland Facies</td>
<td>70</td>
</tr>
<tr>
<td>Sclerophilous Grazed Forests (Dehesas)</td>
<td>78</td>
</tr>
<tr>
<td>Semi-Natural Tall-Herb Humid Meadows</td>
<td>78</td>
</tr>
<tr>
<td>Mesophile Grasslands</td>
<td>82</td>
</tr>
<tr>
<td>RAISED BOGS AND MIRES AND FENS</td>
<td>84</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>----</td>
</tr>
<tr>
<td>SPHAGNUM ACID BOGS</td>
<td>84</td>
</tr>
<tr>
<td>CALCAREOUS FENS</td>
<td>89</td>
</tr>
<tr>
<td>BOREAL MIRES</td>
<td>92</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ROCKY HABITATS AND CAVES</th>
<th>93</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCREE</td>
<td>93</td>
</tr>
<tr>
<td>ROCKY SLOPES WITH CHASMOPHYTIC VEGETATION</td>
<td>98</td>
</tr>
<tr>
<td>OTHER ROCKY HABITATS</td>
<td>102</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>FORESTS</th>
<th>103</th>
</tr>
</thead>
<tbody>
<tr>
<td>FORESTS OF BOREAL EUROPE</td>
<td>103</td>
</tr>
<tr>
<td>FORESTS OF TEMPERATE EUROPE</td>
<td>109</td>
</tr>
<tr>
<td>MEDITERRANEAN DECIDUOUS FORESTS</td>
<td>131</td>
</tr>
<tr>
<td>MEDITERRANEAN SCLEROPHYLLOUS FORESTS</td>
<td>136</td>
</tr>
<tr>
<td>TEMPERATE MOUNTAINOUS CONIFEROUS FORESTS</td>
<td>140</td>
</tr>
<tr>
<td>MEDITERRANEAN AND MACARONESIAN MOUNTAINOUS CONIFEROUS FORESTS</td>
<td>142</td>
</tr>
</tbody>
</table>
WHY THIS MANUAL?

Historical review

The "Habitats" Directive\(^1\) is a Community legislative instrument in the field of nature conservation that establishes a common framework for the conservation of wild animal and plant species and natural habitats of Community importance; it provides for the creation of a network of special areas of conservation, called Natura 2000, to "maintain and restore, at favourable conservation status, natural habitats and species of wild fauna and flora of Community interest".

Animal and plant species names are clearly presented in the Directive and, despite minor misspellings or use of synonyms, no major additional work needs to be done to allow a correct interpretation of Annex II. In contrast, the development of a common agreed definition appeared to be essential for the different habitat types of Annex I.

Annex I lists today 233 European natural habitat types, including 71 priority (i.e. habitat types in danger of disappearance and whose natural range mainly falls within the territory of the European Union). Annex I was initially based on the hierarchical classification of European habitats developed by the CORINE Biotopes project\(^2\) since that was the only existing classification at European level. A draft list of habitat types for Annex I was therefore drawn up on the basis of this classification by Professor A. Noirfalise and submitted to the national experts preparing the Directive as a working document in August 1989. Numerous discussions with the national experts then took place between 1989 and 1991, culminating in the version of Annex I published in the Official Journal in May 1992.

In December 1991, while the Directive was being adopted, a thorough revision of the CORINE classification was published\(^3\). This revision introduced numerous changes within codes and habitat types, in particular involving the division of the latter into sub-types. Definitions had been prepared for the various categories. Consequently, the Annex I codes no longer corresponded fully to the codes and descriptive content of the various categories of CORINE, resulting in considerable ambiguities in the interpretation of Annex I on the basis of the CORINE classification. The Task Force/European Environment Agency thus produced a paper establishing the correspondence between the habitat codes of Annex I and those of the 1991 version of the CORINE classification\(^4\). This paper also included the description proposed in the 1991 CORINE version for the various habitat types of Annex I.

The manual

Having in mind all these difficulties of classification, the Scientific Working Group, set up by the Habitats Committee (established by Directive 92/43/EEC), expressed in May 1992 the need to prepare a manual for the interpretation of Annex I. Following a call for proposals the Commission charged Professor Thanghe from the Université Libre de Bruxelles to prepare a draft manual ⁵.

Following several meetings of the Scientific Working Group, the Commission agreed the two following points with the national experts:

1) The interpretation work on Annex I should primarily focus on the priority habitat types.
2) The CORINE classification (1991 version) provides a basis for a description of the Annex I habitat types; where the experts feel that it is not suitable, an operational scientific description should be produced from the contributions of the national experts.

In September 1993 the Université Libre de Bruxelles finalised the study relating to the interpretation of Annex I priority habitat types. This study focused on the drafting of an eight field descriptive sheet drawn up on the basis of written and oral scientific contributions from the national experts. Each sheet gathers the information on national and regional particularities, as well as types of associated habitats. The manual for the interpretation of Annex I priority habitat types of the Council Directive 92/43/EEC was compiled by the Commission (DG XI), based on the study of the Université Libre de Bruxelles, the contributions of the national experts, and the CORINE classification (1991 version); this document was approved by the Habitats Committee in February 1994 (Doc. HABITATS 94/3 FINAL).

Following the adoption of the priority habitats manual, the experts identified a set of 36 non priority habitat types also causing interpretation problems. An interpretation document was drafted by the Université Libre de Bruxelles, discussed in a meeting of the Scientific Working Group (December 1994) and revised accordingly ⁶.

On April 1995 the Habitats Committee approved the EUR12 version of the ‘Interpretation Manual of European Union Habitats’ ⁷, which incorporated:

i) the descriptive sheets for priority habitats ⁸, which establish clear, operational scientific definitions of habitat types, using pragmatic descriptive elements (e.g. characteristic plants), and taking into consideration regional variation;

ii) the descriptive sheets of 36 non priority habitats similar to those used for priority habitats;

iii) the CORINE Biotopes definitions ³ for the remaining non priority habitats; these definitions should be considered 'a minimal interpretation', not exclusive; some CORINE definitions do not take account of sub-types, regional varieties and/or do not cover all the geographical range of an habitat type - this fact should be recognised, thus allowing a certain flexibility in the interpretation of these Annex I habitat types.

The contents of the manual did not take into account the accession of Austria, Finland and Sweden, which has resulted in the inclusion of a new biogeographical region (the Boreal region) in the Directive. These new Member States have asked for the introduction in Annex I of several priority habitat types that are restricted or only apply to them. In order not to delay the distribution of the manual, the Commission has decided to

⁵ Étude relative au projet de manuel technique d'interprétation de l'Annexe I de la Directive habitats 92/43/CEE. Rapport final, September 1993. Université Libre de Bruxelles (contrat n° 4-3040(92)15504).
⁷ Also available in French under the title 'Manuel d'interprétation des habitat de l'Union européenne'
⁸ From Doc. HABITATS 94/3 FINAL
publish that first version (EUR12) and envisaged the preparation of a second version (EUR15) in order to incorporate new information (mainly on distribution and regional sub-types).

THE EUR15 VERSION

The prime objective of the EUR15 version was to update the old EUR12 version. Descriptive sheets were added for the 11 priority types attached to Annex I when Austria, Finland and Sweden joined the Union; it further incorporates comments for other Annex I habitats occurring in those Member States, and corrects, or adds, newly acquired information.

The 1991 classification (Habits of the European Community) was extended in 1993 to the whole Palaearctic region, namely with the inclusion of the Nordic vegetation classification; this classification was supplemented in 1995 with text descriptions, phytosociological units and references; a computer database tool (PHYSIS) was developed to support this work. The EUR15 version updated the definitions of those habitat types for which the CORINE 1991 has been used, on the basis of the information contained in the PHYSIS database. Accordingly, the CORINE codes are also replaced by the 'Palaearctic codes'. In situations where ambiguities exist between the definitions contained in this manual and those of the Palaearctic habitats classification or PHYSIS database, it is intended that the definitions of this manual should take precedence.

This work was adopted by the Habitats Committee on 13.9.1996. The 2nd edition adopted on the 4th October 1999 included amendments for the Boreal biogeographical region to the Annex I and the removal of the reference to the geographical distribution of habitats (which is included in the reference lists of the habitats types by biogeographic region).

THE EUR25 VERSION

The EUR25 version of the Interpretation Manual includes descriptions of new habitats and amendments to some existing habitats resulting from the expected addition of 10 new Member states in May 2004. After extensive discussions among Member States, Accession Countries and the European Commission, 20 new habitat types were accepted to be added to Annex I, and respective descriptions of these new types were adopted by the Habitats Committee on 14 March 2002. Additionally, several of the habitat types proposed have been agreed to be variations of existing habitats and therefore some amendments to existing habitats were necessary in order to reflect the habitats as found in the EU25 area. In the frame of the Accession Treaty 2003, signed in April 2003 in Athens, new consolidated annexes were prepared including the 20 new habitat types.

The descriptions of new habitats have been prepared by the European Topic Centre on Nature Protection and Biodiversity using the PHYSIS database as the main source. This description was then compared with the information given in the proposal from accession countries and if judged necessary amended. The lists of plants in particular are usually a composite of both sources. In a second step, comments from both Accession Countries and Member States were taken into account, which led to the new definitions enclosed.

The fact that many of the habitat types of Annex I are qualified by biogeographical terms such as Mediterranean, Alpine, Medio-European, etc., meaning that they have their main occurrence in a given biogeographical region, does not exclude the possibility of finding the same habitat types in other biogeographical regions. In fact, these often isolated occurrences have a major scientific and conservation value. The users of the manual will need to employ a certain flexibility of interpretation, particularly in those areas where the habitat types are very fragmentary and influenced by human activities.

9 Accession Act of Austria, Finland and Sweden (OJ L1,1.1.1995, p.135)
11 Institut Royal des Sciences Naturelles de Belgique
THE EUR27 VERSION

After extensive discussions among Member States, Accession Countries and the European Commission, 13 new habitat types were accepted to be added to Annex I, and descriptions of these new types were adopted by the Habitats Committee on 13 April 2007 by written procedure. Additionally several of the habitat types proposed have been agreed to be variations of existing habitats and therefore some amendments to existing habitats were necessary in order to reflect the habitats as found in the EU27 area.

Descriptions of marine habitats 1110, 1170 and 1180 have also been revised to take into account new interpretations adopted by the Habitats Committee on 20 November 2006 by written procedure. These interpretations are given in “Guidelines for the establishment of the Natura 2000 network in the marine environment. Application of the Habitats and Birds Directives”, published in May 2007 by the Commission Services.

Some minor errors have also been corrected.

THE EUR28 VERSION

The EUR28 version of the Interpretation Manual includes descriptions of new habitats and one amendment to an existing habitat resulting from the Croatia joining the European Union in 2012.

Following proposals from Croatia, negotiations with the European Commission and consultation with the Member States, 2 new habitat types were accepted to be added to Annex I and one existing habitat (8140 Eastern Mediterranean screes) has been amended to take into account variation in the Balkan Peninsula. These descriptions were adopted by the Habitats Committee on 4 October 2012.

Some errors have also been corrected, in particular the corresponding classes in the EUNIS habitats classification for 3 marine habitats have been revised to be consistent with the current version of the EUNIS Habitats Classification. These changes were adopted by the Habitats Committee on 25 April, 2013.
The habitat types are grouped and sorted according to Annex I of the Directive.

Name of the habitat type;
an asterisk (*) indicates a priority habitat

2140 * Decalcified fixed dunes with *Empetrum nigrum*

PAL.CLASS.: 16.23

1) Decalcified dunes colonised by *Empetrum nigrum* heaths of the coasts. Syntaxa associated to this habitat type: *Empetrition nigri, Calluno Genistion pilosae* p., *Ericion tetralicis* p. The term "fixed" should be taken to mean the opposite of "shifting". The psychrophilic coastal association *Carici trinervis-Callunetum vulgaris de Foucault & Gehu 78* may be included here.

2) **Plants:** *Carex arenaria, Empetrum nigrum, Genista tinctoria, Pyrola rotundifolia.*

3) **Corresponding categories**
 - United Kingdom classification: "H11b Calluna vulgaris-Carex arenaria heath community, Empetrum nigrum ssp. nigrum sub-community".
 - German classification: "100401 Krähenbeer-Heide der Küsten". In Germany highly endangered coastal *Empetrum nigrum* heathland on the Geest are included.
 - Nordic classification: "4143 Calluna vulgaris-Empetrum nigrum-Carex arenaria-typ".

COASTAL AND HALOPHYTIC HABITATS

Open sea and tidal areas

1110 Sandbanks which are slightly covered by sea water all the time

PAL.CLASS.: 11.125, 11.22, 11.31, 11.333

1) Sandbanks are elevated, elongated, rounded or irregular topographic features, permanently submerged and predominantly surrounded by deeper water. They consist mainly of sandy sediments, but larger grain sizes, including boulders and cobbles, or smaller grain sizes including mud may also be present on a sandbank. Banks where sandy sediments occur in a layer over hard substrata are classed as sandbanks if the associated biota are dependent on the sand rather than on the underlying hard substrata.

“Slightly covered by sea water all the time” means that above a sandbank the water depth is seldom more than 20 m below chart datum. Sandbanks can, however, extend beneath 20 m below chart datum. It can, therefore, be appropriate to include in designations such areas where they are part of the feature and host its biological assemblages.

2) Plants:
North Atlantic including North Sea - Zostera sp., free living species of the Corallinaceae family.
Central Atlantic Islands (Macaronesian Islands) - Cymodocea nodosa and Zostera noltii. On many sandbanks free living species of Corallinaceae are conspicuous elements of biotic assemblages, with relevant role as feeding and nursery grounds for invertebrates and fish. On many sandbanks macrophytes do not occur.
Mediterranean - The marine Angiosperm Cymodocea nodosa, together with photophilic species of algae living on the leaves (more than 15 species, mainly small red algae of the Ceramiaceae family), associated with Posidonia beds. On many sandbanks macrophytes do not occur.

Animals:
North Atlantic including North Sea - Invertebrate and demersal fish communities of sandy sublittoral (e.g. polychaete worms, crustacea, anthozoans, burrowing bivalves and echinoderms, Ammodytes spp., Callionymus spp., Pomatoschistus spp., Echiichtys vipera, Pleuronectes platessa, Limanda limanda).
Central Atlantic Islands (Macaronesian Islands) - Fish, crustacean, polychaeta, hydrozoan, burrowing bivalves, irregular echinoderms.
Baltic Sea - Invertebrate and demersal fish communities of sandy sublittoral (fine and medium grained sands, coarse sands, gravelly sands), e.g. polychaetes: Scoloplus armiger, Pygospio elegans, Nereis diversicolor, Travistia sp., e.g. bivalves: Macoma balthica, Mya arenaria, Cerastoderma sp., e.g. crustaceans: Crangon crangon, Saduria entomon, e.g. fish species: Platichthys flesus, Nerophis ophidion, Pomatoschistus spp., Ammodytes tobianus.
Mediterranean - Invertebrate communities of sandy sublittoral (e.g. polychaetes). Banks are often highly important as feeding, resting or nursery grounds for sea birds, fish or marine mammals.

3) Corresponding categories
German classification: “Sandbank der Ostsee (ständig wasserbedeckt)(040202a)”, “Sandbank der Nordsee (ständig wasserbedeckt)(030202a)”.

Interpretation Manual - EUR28
Barcelona Convention: “Biocenosis of fine sands in very shallow waters (III. 2. 1.) with facies with *Lentidium mediterraneum* (III. 2. 1. 1.), “Biocenosis of well sorted fine sands (III. 2. 2.) with associations with *Cymodocea nodosa* on well sorted fine sands (III. 2. 2. 1.) and with *Holophila stipulacea* (III. 2. 2. 2), the latter considered determinant habitat in C. B.”,”

“Biocenosis of coarse sands and fine gravels mixed by the waves (III. 3. 1.) with association with rhodolithes (III. 3. 1. 1), considered determinant habitat in the C. B.”, “Biocenosis of coarse sands and fine gravels under the influence of bottom currents (also found in the Circalittoral) (III. 3. 2.). It is possible to find a facies and an association which are determinant habitats for C. B.: the maërl facies (= Association with *Lithothamnion corallioides* and *Phymatolithon calcareum*), also found as facies of the biocenosis of coastal detritic (III. 3. 2. 1), and the association with rhodolithes (III. 3. 2. 2),” “Biocenosis of infralittoral pebbles (III. 4. 1.) with facies with *Gouania wildenowi* (III. 4. 1. 1.), small teleostean which lives among pebbles.”

Vegetationstyper i Norden (Pålsson (ed.) 1994): “*Zostera marina* -typ (4.4.1.1)”, “*Ruppia maritima* -typ (4.4.1.2)”, “*Chara* -typ (6.3.3.1)”, “*Potamogeton pectinatus* (6.3.2.2)”.

Kustbiotoper i Norden (Nordiska Ministerrådet 2001): “Sandbottnar (7.7.1.2; 7.8.1.2; 7.8.4.2; 7.8.5.2; 7.8.6.7; 7.8.6.8; 7.8.6.9; 7.8.7.9; 7.8.7.10; 7.9.1.1.; 7.9.2.1; 7.9.3.1; 7.9.4.1.)”

HELCOM classification: “Sublittoral gravel bottoms. Banks with or without macrophyte vegetation (2.4.2.3)”, “Sublittoral sandy bottoms. Banks with or without macrophyte vegetation (2.5.2.4)”.

The National Marine Habitat Classification for Britain and Ireland Version 03.02: Relevant types within “Sublittoral coarse sediments (SCS), Sublittoral sands (SSA) and Sublittoral macrophytes communities (SMP)”.

EUNIS classification: Relevant types within “A5.1 Sublittoral coarse sediment, A5.2 Sublittoral sand, A5.4 Sublittoral mixed sediments, A5.5 Sublittoral macrophyte-dominated sediment”.

4) Sandbanks can be found in association with mudflats and sandflats not covered by seawater at low tide (1140), with Posidonia beds (1120) and reefs (1170). Sandbanks may also be a component part of habitat 1130 Estuaries and habitat 1160 Large shallow inlets and bays.

1120

Posidonia beds (Posidonion oceanicae)

PAL.CLA: 11.34

1) Beds of *Posidonia oceanica* (Linnaeus) Delile characteristic of the infralittoral zone of the Mediterranean (depth: ranging from a few dozen centimetres to 30 - 40 metres). On hard or soft substrate, these beds constitute one of the main climax communities. They can withstand relatively large variations in temperature and water movement, but are sensitive to desalination, generally requiring a salinity of between 36 and 39‰.

2) **Plants**: *Posidonia oceanica*.

Animals: Molluscs- #*Pinna nobilis*; Echinoderms- *Asterina pancerii, Paracentrotus lividus*; Fish- *Epinephelus guaza, Hippocampus ramulosus*.

1130

Estuaries

PAL.CLA: 13.2, 11.2

1) Downstream part of a river valley, subject to the tide and extending from the limit of brackish waters. River estuaries are coastal inlets where, unlike 'large shallow inlets and bays' there is generally a substantial freshwater influence. The mixing of freshwater and sea water and the reduced current flows in the shelter of the estuary lead to deposition of fine sediments, often forming extensive intertidal sand and mud flats. Where the tidal currents are faster than flood tides, most sediments deposit to form a delta at the mouth of the estuary.

Baltic river mouths, considered as an estuary subtype, have brackish water and no tide, with large wetland vegetation (helophytic) and luxurious aquatic vegetation in shallow water areas.

2) **Plants**: Benthic algal communities, *Zostera* beds e.g. *Zostera noltii* (*Zosteretea*) or vegetation of brackish water: *Ruppia maritima (= R. rostellata (Ruppietea)); Spartina maritima (Spartinea); Sarcocornia perennis (Arthrocnemetea)*. Both species of fresh water and brackish water can be
found in Baltic river mouths (Carex spp., Myriophyllum spp., Phragmites australis, Potamogeton spp., Scirpus spp.).

Animals: Invertebrate benthic communities; important feeding areas for many birds.

3) **Corresponding categories**

German classification: "D2a Ästuare (Fließgewässermündungen mit Brackwassereinfluß u./od. Tidenhub eingeschlossen werden", "050105 Brackwasserwatt des Ästuare an der Nordsee", "050106 Süßwasserwatt im Tideeinfluß des Nordsee".

4) An estuary forms an ecological unit with the surrounding terrestrial coastal habitat types. In terms of nature conservation, these different habitat types should not be separated, and this reality must be taken into account during the selection of sites.

1140 Mudflats and sandflats not covered by seawater at low tide

PAL.CLASS.: 14

1) Sands and muds of the coasts of the oceans, their connected seas and associated lagoons, not covered by sea water at low tide, devoid of vascular plants, usually coated by blue algae and diatoms. They are of particular importance as feeding grounds for wildfowl and waders. The diverse intertidal communities of invertebrates and algae that occupy them can be used to define subdivisions of 11.27, eelgrass communities that may be exposed for a few hours in the course of every tide have been listed under 11.3, brackish water vegetation of permanent pools by use of those of 11.4.

Note: Eelgrass communities (11.3) are included in this habitat type.

1150 Coastal lagoons

PAL.CLASS.: 21

1) Lagoons are expanses of shallow coastal salt water, of varying salinity and water volume, wholly or partially separated from the sea by sand banks or shingle, or, less frequently, by rocks. Salinity may vary from brackish water to hypersalinity depending on rainfall, evaporation and through the addition of fresh seawater from storms, temporary flooding of the sea in winter or tidal exchange. With or without vegetation from Ruppietea maritimae, Potametea, Zosteretea or Charetea (CORINE 91: 23.21 or 23.22).

- Flads and gloes, considered a Baltic variety of lagoons, are small, usually shallow, more or less delimited water bodies still connected to the sea or have been cut off from the sea very recently by land upheaval. Characterised by well-developed reedbeds and luxuriant submerged vegetation and having several morphological and botanical development stages in the process whereby sea becomes land.

- Salt basins and salt ponds may also be considered as lagoons, providing they had their origin on a transformed natural old lagoon or on a saltmarsh, and are characterised by a minor impact from exploitation.
2) **Plants:** *Callitriche* spp., *Chara canescens*, *C. baltica*, *C. connivens*, *Eleocharis parvula*, *Lamprothamnium papulosum*, *Potamogeton pectinatus*, *Ranunculus baudottii*, *Ruppia maritima*, *Tolypella n. nidifica*. In flads and gloes also *Chara* spp. (*Chara tomentosa*), *Lemma trisulca*, *Najas marina*, *Phragmites australis*, *Potamogeton* spp., *Stratiotes aloides*, *Typha* spp.

3) **Corresponding categories**

German classification: "0906 Strandsee", "240601 Brackwassersee im Ostseeküstenbereich".

4) Saltmarshes form part of this complex.

1160 Large shallow inlets and bays

PAL.CLASS.: 12

1) Large indentations of the coast where, in contrast to estuaries, the influence of freshwater is generally limited. These shallow 13 indentations are generally sheltered from wave action and contain a great diversity of sediments and substrates with a well developed zonation of benthic communities. These communities have generally a high biodiversity. The limit of shallow water is sometimes defined by the distribution of the *Zosteretea* and *Potametea* associations.

Several physiographic types may be included under this category providing the water is shallow over a major part of the area: embayments, fjards, rias and voes.

2) **Plants:** *Zostera* spp., *Ruppia maritima*, *Potamogeton* spp. (e.g. *P. pectinatus*, *P. praelongus*), benthic algae.

Animals: Benthic invertebrate communities.

3) **Corresponding categories**

German classification: "B31 naturnaher Boddengewässerkomplex", "B32 Boddengewässerkomplex, geringe Belastung", "A2a Flachwasserzonen der Nordsee (Meeresarme u. -buchten, incl. Seegraswiesen)".

13 National experts consider inappropriate to fix a maximum water depth, since the term 'shallow' may have different ecological interpretations according to the physiographic type considered and geographical location.
1170 Reefs

PAL.CLASS.: 11.24, 11.25

1) Reefs can be either biogenic concretions or of geogenic origin. They are hard compact substrata on solid and soft bottoms, which arise from the sea floor in the sublittoral and littoral zone. Reefs may support a zonation of benthic communities of algae and animal species as well as concretions and corallogenic concretions.

Clariifications:
- “Hard compact substrata” are: rocks (including soft rock, e.g. chalk), boulders and cobbles (generally >64 mm in diameter).
- “Biogenic concretions” are defined as: concretions, encrustations, corallogenic concretions and bivalve mussel beds originating from dead or living animals, i.e. biogenic hard bottoms which supply habitats for epibiotic species.
- “Geogenic origin” means: reefs formed by non biogenic substrata.
- “Arise from the sea floor” means: the reef is topographically distinct from the surrounding seafloor.
- “Sublittoral and littoral zone” means: the reefs may extend from the sublittoral uninterrupted into the intertidal (littoral) zone or may only occur in the sublittoral zone, including deep water areas such as the bathyal.
- Such hard substrata that are covered by a thin and mobile veneer of sediment are classed as reefs if the associated biota are dependent on the hard substratum rather than the overlying sediment.
- Where an uninterrupted zonation of sublittoral and littoral communities exist, the integrity of the ecological unit should be respected in the selection of sites.
- A variety of subtidal topographic features are included in this habitat complex such as: Hydrothermal vent habitats, sea mounts, vertical rock walls, horizontal ledges, overhangs, pinnacles, gullies, ridges, sloping or flat bed rock, broken rock and boulder and cobble fields.

2) Plants:

North Atlantic including North Sea and Baltic Sea: - A large variety of red, brown and green algae (some living on the leaves of other algae).

Atlantic (Cantabric Sea, Bay of Biscay): - Gelidium sesquipedale communities associated with brown algae (Fucus, Laminaria, Cystoseira), and red algae (Corallinaceae, Ceramiciceae, Rhodomelaceae).

Central Atlantic Islands (Macaronesian Islands) and Mediterranean: - Cystoseira/Sargassum beds with a mixture of other red algae (Gelidiales, Ceramiciales), brown algae (Dictyotales) and green algae (Siphonales, Siphonacladales).

Animals - reef forming species:

North Atlantic including North Sea: - Polychaetes (e.g. Sabellaria spinulosa, Sabellaria alveolata, Serpula vermicularis), bivalves (e.g. Modiolus modiolus, Mytilus sp.) and cold water corals (e.g. Lophelia pertusa).

Atlantic (Gulf of Cádiz): - Madreporarians communities: Dendrophyllia ramea community (banks), Dendrophyllia cornigera community (banks); white corals communities (banks), (Madrepora oculata and Lophelia pertusa community (banks). Solenosmilia variabilis community (banks). Gorgonian communities: Facies of Isidella elongata and Callogorgia verticillata and Viminella flagellum; Facies of Leptogorgia spp.; Facies of Elisella paraplexauroides; Facies of Acanthogorgia spp. and Paramuricea spp. Filigrana implexa formations.

Central Atlantic Islands (Macaronesian Islands): - Warm water corals (Dendrophilia, Anthiphates), serpulids, polychaetes, sponges, hydrozoan and briozoan species together with bivalve molluscs (Sphondillus, Pinna).

Baltic Sea: - Bivalves (e.g. Modiolus modiolus, Mytilus sp., Dreissena polymorpha).

Mediterranean: - Serpulid polychaetes, bivalve molluscs (e.g. Modiolus sp. Mytilus sp. and oysters) Polychaetes (e.g. Sabellaria alveolata).

South-West Mediterranean: - Dendropoma petraeum reefs (forming boulders) or in relation with the red calcareous algae Spongites spp or Lithophyllum lichenoides. Filigrana implexa formations. Gorgonian communities: Facies of holoxonia gorgonians (Paramuricea clavata “forest”, Eunicella

West Mediterranean: - Polychaetes (exclusively Sabellaria alveolata).

Animals - non reef forming:
North Atlantic including North Sea: - In general sessile invertebrates specialized on hard marine substrates such as sponges, anthozoa or cnidaria, bryozoans, polychaetes, hydroids, ascidians, molluscs and cirripedia (barnacles) as well as diverse mobile species of crustaceans and fish.
Central Atlantic Islands (Macaronesian Islands): - Gorgonians, hydrozoans, bryozoan and sponges, as well as diverse mobile species of crustacean, molluscs (cephalopoda) and fish.
Baltic Sea: - Distribution and abundance of invertebrate species settling on hard substrates are limited by the salinity gradient from west to east. Typical groups are: hydroids, ascidians, cirripedia (barnacles), bryozoans and molluscs as well as diverse mobile species of crustaceans and fish.
Mediterranean: - Cirripedia (barnacles), hydroids, bryozoans, ascidians, sponges, gorgonians and polychaetes as well as diverse mobile species of crustaceans and fish.

3) Corresponding categories

Barcelona Convention; “Biocenosis of supralittoral rock (I.4.1.)”, “Biocenosis of the upper mediolittoral rock (II.4.1.)”, “Biocenosis of the lower mediolittoral rock (II.4.2.)”, “Biocenosis of infralittoral algae (III.6.1.)”, “Coralligenous (IV.3.1.)”, “Biocenosis of shelf-edge rock (IV.3.3)”, “Biocenosis of deep sea corals present in the Mediterranean bathyal (V.3.1.)”.

The National Marine Habitat Classification for Britain and Ireland (Version 03.02): “Littoral rock and other hard substrata (biotopes beginning with LR)”, “Infralittoral rock and other hard substrata (biotopes beginning with IR)”, “Circalittoral rock and other hard substrata (biotopes beginning with CR)”, “Littoral biogenic reefs (biotopes beginning with LBR)” and “Sublittoral biogenic reefs (biotopes beginning with SBR)”.

EUNIS classification: Relevant types within “A1 Littoral rock and other hard substrata, A2.7 Littoral biogenic reefs, A3 Infra- and circalittoral rock and other hard substrata, A4 Circalittoral rock and other hard substrata, A5.6 Sublittoral biogenic reefs, A6.1 Deep-sea rock and artificial hard substrata, A6.6 Deep-sea bioherms, A6.7 Raised features of the deep-sea bed”

HELCOM classification: “Sublittoral soft rock reefs of the photic zone with little or no macrophyte vegetation (2.1.1.2.3)”, “Hydrolittoral soft rock reefs with or without macrophyte vegetation (2.1.1.3.3)”, “Sublittoral solid rock reefs of the photic zone with or without macrophyte vegetation (2.1.2.2.3)”, “Hydrolittoral solid rock reefs with or without macrophyte vegetation (2.1.2.3.3)”, “Sublittoral stony reefs of the photic zone with or without macrophyte vegetation (2.2.2.3)”, “Stony reefs of the hydrolittoral zone with or without macrophyte vegetation (2.2.3.3)”.

Trilateral Wadden Sea Classification (von Nordheim et al. 1996): “Sublittoral (old) blue mussel beds (03.02.07)”, “Sublittoral oyster reefs (03.02.08)”, “Sublittoral sabellaria reefs (03.02.09)”, “Eulittoral (old) blue mussel beds (05.01.07)”, “Benthic zone, stony and hard bottoms, rich in macrophytes, incl. artificial substrates (03.02.06)”, “Benthic zone, stony and hard bottoms, few macrophytes (03.02.04)”.
Nordic classification (Kustbiotoper i Norden, Nordiska Ministerrådet 2001): “Klippbottnar (7.7.1.3; 7.7.2.3; 7.7.3.3; 7.7.4.3; 7.7.5.3; 7.8.1.3; 7.8.2.3; 7.8.3.4; 7.8.4.3; 7.8.5.3; 7.8.6.13; 7.8.7.16)”, “Sublittorale samfund på sten- och klippebund (7.9.1.2)”, “Sublittorale samfund på stenbund (7.9.2.2; 7.9.3.2)”.

Reefs can be found in association with “vegetated sea cliffs” (habitats 1230, 1240 and 1250) ”sandbanks which are covered by sea water all the time” (1110) and “sea caves” (habitat 8830). Reefs may also be a component part of habitat 1130 “estuaries” and habitat 1160 “large shallow inlets and bays”

Submarine structures made by leaking gases

PAL.CLASS.: 11.24

1) Submarine structures consist of sandstone slabs, pavements, and pillars up to 4 m high, formed by aggregation of carbonate cement resulting from microbial oxidation of gas emissions, mainly methane. The formations are interspersed with gas vents that intermittently release gas. The methane most likely originates from the microbial decomposition of fossil plant materials. The first type of submarine structures is known as “bubbling reefs”. These formations support a zonation of diverse benthic communities consisting of algae and/or invertebrate specialists of hard marine substrates different to that of the surrounding habitat. Animals seeking shelter in the numerous caves further enhance the biodiversity. A variety of sublittoral topographic features are included in this habitat such as: overhangs, vertical pillars and stratified leaf-like structures with numerous caves. The second type are carbonate structures within “pockmarks”. “Pockmarks” are depressions in soft sediment seabed areas, up to 45 m deep and a few hundred meters wide. Not all pockmarks are formed by leaking gases and of those formed by leaking gases, many do not contain substantial carbonate structures and are therefore not included in this habitat. Benthic communities consist of invertebrate specialists of hard marine substrata and are different from the surrounding (usually) muddy habitat. The diversity of the infauna community in the muddy slope surrounding the “pockmark” may also be high.

2) Plants: “Bubbling reefs” - If the structure is within the photic zone, marine macroalgae may be present such as Laminariales, other foliose and filamentous brown and red algae. “Pockmarks” - Usually none

Animals: “Bubbling reefs” - A large diversity of invertebrates such as Porifera, Anthozoa, Polychaeta, Gastropoda, Decapoda, Echinodermata as well as numerous fish species are present. Especially the polychaete Polycirrus norwegicus and the bivalve Kellia suborbicularis are associated species of the “bubbling reefs”. “Pockmarks” - Invertebrate specialists of hard substrate including Hydrozoa, Anthozoa, Ophiuroidea and Gastropoda. In the soft sediment surrounding the pockmark Nematoidae, Polychaeta and Crustacea are present.

3) Corresponding categories:
HELCOM classification: All subtypes under “Bubbling reefs (2.10)”
EUNIS: Relevant types under A5.71 Seeps and vents in sublittoral sediments.

4) “Bubbling reefs” can be found in association with the habitat types ”sandbanks, which are covered by sea water all the time (1110)” and “reefs (1170)”.

Sea cliffs and shingle or stony beaches

1210 Annual vegetation of drift lines

PAL.CLASS.: 17.2

1) Formations of annuals or representatives of annuals and perennials, occupying accumulations of drift material and gravel rich in nitrogenous organic matter (Cakiletea maritima p.).

2) **Plants:** *Cakile maritima*, *Salsola kali*, *Atriplex* spp. (particularly *A. glabriuscula*), *Polygonum* spp., *Euphorbia peplis*, *Mertensia maritima*, *Elymus repens*, *Potentilla anserina*, and, particularly in Mediterranean formations, *Glaucium flavum*, *Matthiola sinuata*, *M. tricuspidata*, *Euphorbia paralias*, *Eryngium maritimum*. In Cyprus this habitat includes endemics such as *Taraxacum aphrogenes* & *T. hellenicum* and in the Black Sea communities with *Cakile maritima* and *Argusia* (Tournefortia) *sibirica*

3) **Corresponding categories**

 United Kingdom Classification: "SD2 Honkenya peploides-Cakile maritima strandline community" and "SD3 Matricaria maritima-Galium aparine shingle beach community".

 Nordic classification : "4213 Elytrigia repens-typ", "4214 Atriplex spp.-Polygonum aviculare-typ" and "4215 Cakile maritima-typ".

 In Azores , the corresponding association is *Caliketum edentulae* Conrad.

4) Sites proposed for this habitat may include *Cakiletea maritima* developed on gravel or mixed gravel and sandy substrates (these mixtures are often very dynamic and variable) but such vegetation on purely sandy beaches should be regarded as habitat 2110 Embryonic shifting dunes if appropriate.

Perennial vegetation of the upper beaches of great shingle banks, formed by *Crambe maritima*, *Honkenya peploides* and other perennial species. A wide range of vegetation types may be found on large shingle structures inland of the upper beach. On more mature, stable, shingle coastal forms of grassland, heath and scrub vegetation may develop. Some areas of unusual vegetation dominated by lichens and bryophytes are found on more mature shingle.

Sub-types
- 17.31 - Baltic sea kale communities: *Elymo-Crambetum*
- 17.32 - Channel sea kale communities: *Lathyro-Crambetum*
- 17.33 - Atlantic sea kale communities: *Crithmo-Crambetum*

Plants: *Crambe maritima*, *Honkenya peploides*, *Leymus arenarius* (17.31), *Lathyrus japonicus* (17.32), *Crithmum maritimum* (17.33).

Corresponding categories
- Nordic classification: 17.31 - "4112 Crambe maritima-Elytrigia repens-typ", "4113 Achillea millefolium-Angelica archangelica-typ".
- United Kingdom classification: 17.32 - " SD1 Rumex crispus-Glaucium flavum shingle beach community".

References
Vegetated sea cliffs of the Atlantic and Baltic coasts

1) Vegetated cliffs exhibit a complex pattern of variation reflecting the degree of maritime exposure, geology and geomorphology, biogeographical provenance and pattern of human management. Typically, on the most exposed cliffs there is a zonation from crevice and ledge communities of the steepest slopes beside the sea (Crithmo-Armerietalia, Géhu 1964) through to closed maritime grasslands on upper cliff slopes, cliff tops and cliff ledges where there is deeper accumulation of soils (Silenion maritimae, Malloch 1973). Further inland and on more sheltered cliffs, these grade into a complex assemblage of maritime and paramaritime types of heath, calcareous grassland, acid grassland, therophyte, tall herb, scrub and wind-pruned woodland vegetation, each enriched by floristic elements characteristic of coastal habitats. On soft coasts with much active movement, complex assembles of maritime and non-maritime vegetation occur.

3) Corresponding categories
Nordic classification: "4111 Matricaria maritima-Silene uniflora-typ".

Vegetated sea cliffs of the Mediterranean coasts with endemic Limonium spp.

1) Vegetated cliffs and rocky shores of the Mediterranean, of the Mediterraneo-temperate eastern Atlantic (south-western Iberia) and of the Black Sea. Crithmo-Limonietalia

2) Plants: Crithmum maritimum, Plantago subulata, Silene sedoides, Sedum litoreum, Limonium spp., Armeria spp., Euphorbia spp., Daucus spp., Asteriscus maritimus. Many Limonium species, in particular, are endemics of extremely local occurrence.
1250 Vegetated sea cliffs with endemic flora of the Macaronesian coasts

PAL.CLASS.: 18.23 and 18.24

1) Aerohaline communities of the sea-cliffs of the Canaries and Madeira (*Frankenio-Astidamietalia latifoliae*); communities of the sea-cliffs of the Azores (*Festucion petraeae*) dominated by the endemic *Festuca petraea*.

Atlantic and continental salt marshes and salt meadows

1310 *Salicornia* and other annuals colonising mud and sand

PAL.CLASS.: 15.1

1) Formations composed mostly or predominantly of annuals, in particular Chenopodiaceae of the genus *Salicornia* or grasses, colonising periodically inundated muds and sands of marine or interior salt marshes. *Thero-Salicornietea*, *Frankenietea pulverulentae*, *Saginetea maritimae*.

Sub-types

15.11 - Glasswort swards (*Thero-Salicornietalia*): annual glasswort (*Salicornia* spp., *Microcnemum coralloides*), seablite (*Suaeda maritima*), or sometimes salwort (*Salsola* spp.) formations colonising periodically inundated muds of coastal saltmarshes and inland salt-basins.

15.12 - Mediterranean halo-nitrophilous pioneer communities (*Frankenion pulverulentae*): formations of halo-nitrophilous annuals (*Frankenia pulverulenta*, *Suaeda splendens*, *Salsola soda*, *Cressa cretica*, *Parapholis incurva*, *P. strigosa*, *Hordeum marinum*, *Sphenopus divaricatus*) colonising salt muds of the Mediterranean region, susceptible to temporary inundation and extreme drying;

15.13 - Atlantic sea-pearlwort communities (*Saginion maritimae*): formations of annual pioneers occupying sands subject to variable salinity and humidity, on the coasts, in dune systems and saltmarshes. They are usually limited to small areas and best developed in the zone of contact between dune and saltmarsh.

15.14 Central Eurasian crypsoid communities: Sparse solonchak formations of annual grasses of genus *Crypsis* (*Heleochloa*) colonizing drying muds of humid depressions of the salt steppes and saltmarshes (15.A) of Eurasia, from Pannonia to the Far East.

3) **Corresponding categories**
 United Kingdom classification: "SM7 Arthrocnemum perenne stands", "SM8 Annual Salicornia saltmarsh", "SM9 Suaeda maritima saltmarsh" and "SM27 Ephemeral saltmarsh vegetation with Sagina maritima".
 Nordic classification: 15.11 - "4233 Salicornia strictissima-typ", "4252 Salicornia europaea-typ", "4253 Spergularia salina-typ".

1320 **Spartina swards (Spartinion maritimae)**

PAL.CLASS.: 15.2

1) Perennial pioneer grasslands of coastal salt muds, formed by Spartina or similar grasses. When selecting sites, preference should be given to those areas supporting rare or local Spartina.

 Sub-types
 - 15.21 - Flat-leaved cordgrass swards: perennial pioneer grasslands of coastal salt muds, dominated by flat-leaved *Spartina maritima*, *S. townsendii*, *S. anglica*, *S. alterniflora*.
 - 15.22 - Rush-leaved cordgrass swards: perennial pioneer grasslands of southern Iberian coastal salt muds, dominated by the juncoform-leaved *Spartina densiflora*.

2) **Plants**: 15.21 - *Spartina maritima*, *S. alterniflora*; 15.22 - *Spartina densiflora*.

3) **Corresponding categories**
 United Kingdom classification: "SM4 Spartina maritima saltmarsh" and "SM5 Spartina alterniflora saltmarsh".

1330 **Atlantic salt meadows (Glauco-Puccinellietalia maritimae)**

PAL.CLASS.: 15.3

1) Salt meadows of Baltic, North Sea, English Channel and Atlantic shores. *Aster tripolium* can be present or abundant in most subdivisions.

3) **Corresponding categories**

"SM17 Artemisia maritima community", "SM18 Juncus maritimus community", "SM19 Blysmus rufus saltmarsh community" and "SM20 Eleocharis uniglumis community".

Nordic classification: 15.32 - "4231 Puccinellia maritima-typ", 15.33 - "422 Övre landstrandens vegetation".

1340 Inland salt meadows

PAL.CLASS.: 15.4

1) Non-coastal natural salt basins made up of different habitat types consisting of zones of seepage of saline water, running or stagnant saline water, with typical halophilous vegetation and of reed beds at the edge of brackish waters.

Artificial or partly artificial sites should only be considered here in specific cases where they harbour a species listed in Annex II of the Directive, or where there are no remaining natural (primary) examples of the habitat at regional or national level.

2) Plants: *Aster tripolium, Atriplex hastata, Elymus atherica (= E. pungens, E. pycnanthus), Halimione pedunculata, Juncus gerardii, Plantago maritima, Puccinellia distans, Salicornia spp., Spergularia salina, Suaeda maritima, Triglochin maritima*.

3) Corresponding categories

United Kingdom classification: "SM23 Spergularia marina-Puccinellietalia distans community".

German classification: "350301 naturnahe Salzrasen des Binnenlandes", "2206 Salz- oder Solquelle", "230405 Salzbach", "230602 salzhaltiges stehendes Gewässer (Binnenlandsalzstellen)".

4) Brackish-water reed beds, salt springs, *Salicornia* swards and, less frequently, small salt water courses.

Mediterranean and thermo-Atlantic saltmarshes and salt meadows

1410 Mediterranean salt meadows (Juncetalia maritimi)

PAL.CLASS.: 15.5

1) Various Mediterranean and western Pontic (Black Sea) communities of the *Juncetalia maritimi*. The different associations are described under point 2) with their characteristic plant species.

Sub-types:

- 15.51 - tall rush saltmarshes dominated by *Juncus maritimus* and/or *J. acutus*
- 15.52 - short rush, sedge and clover saltmarshes (*Juncion maritimi*) and humid meadows behind the littoral, rich in annual plant species and in *Fabacea* (*Trifolion squamosi*)
- 15.53 - Mediterranean halo-psammophile meadows (*Plantaginion crassifoliae*)
- 15.54 - Iberian salt meadows (*Puccinellion fasciculatae*)
15.55 - halophilous marshes along the coast and the coastal lagoons (Puccinellion festuciformis)
15.57 - humid halophilous moors with the shrubby stratum dominated by Artemisia coerulescens (Agropyro-Artemision coerulescentis).
Cyprus subtypes14 - Halophytic vegetation periodically inundated by saline or bracking water

2) **Plants**: Juncus maritimus, J. acutus, Carex extensa, Aster tripolium, Plantago cornuti, Scorzonera parviflora, Merendera sobolifera, Taraxacum bessarabicum, Samolus valerandi (15.51); Hordeum nodosum, H. maritimum, Trifolium squamosum, T. michelianum, Alopecurus bulbosus, Carex divisa, Ranunculus ophioglossifolius, *Linum maritimum* (15.52); Plantago crassifolia, Blackstonia imperfoliata, Centaurnium tenuiflorum, Orchis coriophora ssp. fragans (15.53); Puccinellia fasciculata, Aeluropus littoralis, Juncus gerardii (15.54); Puccinellia festuciformis (15.55). Eleocharis palustris, Puccinellia gigantea, Arthrocnemum macrostachyum, Aeluropus littoralis, Centaurnium spicatum, Cressa cretica, Crypsis factorofskyi, Crypsis schoenoides, Glinus lotoides, Limonium echioides, Parapholis marginata, Schoenoplectus litoralis, Spargularia marina (= S. salina), Sphenopus divaricus, Suaeda vera (Cyprus)

1420 Mediterranean and thermo-Atlantic halophilous scrubs (*Sarcocornetea fruticosi*)

PAL.CLASS.: 15.6

1) Perennial vegetation of marine saline muds (schorre) mainly composed of scrub, essentially with a Mediterranean-Atlantic distribution (*Salicornia, Limonium vulgare, Suaeda* and *Atriplex* communities) and belonging to the *Sarcocornetea fruticosi* class.

2) **Plants**: Halimione portulacoides, Inula critmoides, Suaeda vera and shrubby Sarcocornia.
Vegetation of lower topographic level (*Sarcocorneta*): Sarcocornia perennis, S. alpina, S. fruticosa, Arthrocnemum macrostachyum (= A. glaucum), Halocnemum strobilaceum.

3) **Corresponding categories**
United Kingdom classification: "SM 21 Suaeda vera-Limonium binervosum saltmarsh community", "SM25 Sueda vera saltmarsh community" and "SM7 Arthrocnemum perenne stands".

1430 Halo-nitrophilous scrubs (*Pegano-Salsoletea*)

PAL.CLASS.: 15.72

1) Halo-nitrophilous scrubs (matorrals) belonging to the *Pegano-Salsoletea* class, typical of dry soils under arid climates, sometimes including taller, denser bushes.

14 A revised version of the Palaeartic classification which will include a better coverage of Cyprus is expected to be available in December 2001, this section may then need amending.

Salt and gypsum inland steppes

1510 * Mediterranean salt steppes* (Limonietalia)

PAL.CLASS.: 15.8

1) Associations rich in perennial, rosette-forming (*Limonium* spp.) or esparto grass (*Lygeum spartum*), occupying, along Mediterranean coasts and on the fringes of Iberian salt basins, soils temporarily permeated (though not inundated) by saline water and subject to extreme summer drying, with formation of salt efflorescence. Characteristic syntaxa are Limonietalia, Arthrocnemetalia, Thero-Salicornietalia and Saginetalia maritimae.

- The following syntaxa correspond to regional varieties of this habitat type; Arthrocnemetalia: Suaedion braunblanquetii (continental Iberian peninsula), Arthrocnemion glauci. Limonietalia: Limonion catalaunico-viciosoi (Aragon), Lygeo-Limonion furfuracei (SE Iberian peninsula), Lygeo-Lepidion cardamines (Castilla-La-Mancha). Thero-Salicornietalia: Microcnemion coralloides (continental Iberian peninsula), Salicornion patulae. Saginetalia maritimae: Frankenion pulverulentae, Thero-Suadaion.

1520 * Iberian gypsum steppes* (Gypsophiletalia)

PAL.CLASS.: 15.9

1) Garrigues occupying gypsum-rich soils of the Iberian peninsula, usually very open and floristically characterised by the presence of numerous gypsophilous species. Characteristic syntaxa are Lepidion subulati, Gypsophilion hispanicae and Thymo-Teucrion verticillati.

2) **Plants**: Centaurea hyssopifolia, Gypsophila hispanica, *G. struthium*, Helianthemum squamatum, Herniaria fruticosa, Lepidion subulatum, Ononis tridentata, Reseda stricta, Teucrium libanitis. They are often rich in thymes (*Thymus*), germanders (*Teucrium*), rockroses (*Helianthemum*) and composites (*Centaurea, Jurinea, Santolina, Frankenia*).

1530 * Pannonic salt steppes and salt marshes*

PAL.CLASS.: 15.A1, 15.A2
1) Pannonic and Ponto-Sarmatic salt steppes, salt pans, salt marshes and shallow salt lakes, which are highly influenced by a pannonic climate with extreme temperatures and aridity in summer. The enrichment of salt in the soil is due to high evaporation of ground water during summer. These habitat types are partly of natural origin and partly under a distinct influence of cattle grazing. The halophytic vegetation consists of plant communities on dry salt pans and steppes, humid salt meadows and annual plant communities of periodically flooded salt lakes with typical zonation.

Animals: Molluscs- *Helicopsis striata austriaca; Insects- *Callimorpha quadripunctaria, #Lycaena dispar; Mammals- +Microtus oeconomus mehelyi, #Spermophilus citellus; Birds- Botaurus stellatus, Platalea leucorodia, Porzana parva, Ixobrychus minutus, Acrocephalus melanopogon, Aythya nyroca, Ardea purpurea, Panurus biarmicus.

Boreal Baltic archipelago, coastal and land upheaval areas

1610 Baltic esker islands with sandy, rocky and shingle beach vegetation and sublittoral vegetation

1) Glaciofluvial islands consisting mainly of relatively well sorted sand, gravel or less commonly of till. May also have scattered stones and boulders. The vegetation of esker islands is influenced by the brackish water environment and often by the ongoing land upheaval, which causes a succession of different vegetation types. Several rare vegetation types (heaths, sands and gravel shores) and threatened species occur.

Animals: Insects- Athetis lepigone, Simyra albovenosa, Actebeia praecox; Molluscs- Cerastoderma glaucum, Mya arenaria.

4) These esker islands can be found in association with the following habitat types: Sandbanks which are slightly covered by sea water all the time (1110), Annual vegetation of drift lines (1210), Perennial vegetation of stony banks (1220), Vegetated sea cliffs of the Atlantic and Baltic coasts (1230) and Boreal Baltic sandy beaches with perennial vegetation (1640).

1620 Boreal baltic islets and small islands

1) Groups of skerries, islets or single small islands, mainly in the outer archipelago or offshore areas. Composed of Precambrian, metamorphic bedrock, till or sediment. The vegetation of boreal Baltic islets and small islands is influenced by the brackish water environment, the ongoing land upheaval (in areas with intense land upheaval) and the climatic conditions. The vegetation types are influenced by wind, dry weather, salt and many hours of sunlight. Land-upheaval causes a succession of different vegetation types. Bare bedrock is common. A lot of small islands have no trees. The vegetation is usually very sparse and consists often of mosaic-like pioneer vegetation communities. On some islands the species diversity is increased by nitrogenous excrement from birds. Many of the plants are xerophytic and lichens are common. Temporary or permanent rockpools are common and these are inhabited by a variety of aquatic plant and animal species. Boreal Baltic islets and small islands are important nesting sites for birds and resting sites for seals. The surrounding sublittoral vegetation is also included in the type 1620.

2) Plants: Agrostis stolonifera, Allium schoenoprasum, Angelica archangelica spp. litoralis, Cochlearia danica, Juniperus communis, Lemna minor, Puccinellia distans ssp. borealis, Sedum

Animals: Mammals- Halichoerus grypus, Phoca hispida; Birds- Alca torda, Arenaria interpres, Cepphus grylle, Larus fuscus, Stercorarius parasiticus, Sterna caspia, Uria aalge; Crustaceans- Balanus improvisus, Idotea sp; Molluscs- Mytilus edulis

4) Often associated with the habitat type: Reefs (1170) and Perennial vegetation of stony banks (1220).

1630 * Boreal baltic coastal meadows

PAL.CLASS.: 15.33, 15.34 (1997 version)

Coastal meadows, mostly with low growing plant communities in the geolittoral zone, sometimes interspersed with salt patches, salinity is low (brackish water), tide hardly exists but there can be influence from land upheaval. Most of the areas were traditionally used for mowing or grazing, thus enlarging the areas and keeping the vegetation low, rich in vascular plants and suitable for nesting waders. Characteristically the vegetation occurs in distinct zones, with saline vegetation closest to the sea.

Specially on the shores of the Gulf of Bothnia some phytogeographically interesting arctic relict species occur e.g. Primula sibirica and some endemic taxa (races). Boreal species: Alisma wahlenbergii, Arctophila fulva, Carex glareosa, C. halophila, C. mackenziei, C. paleacea, Deschampsia bottnica, Euphrasia bottnica, Hippuris tetraphylla, Odontites litoralis subsp. fennica, Primula nutans, Puccinellia phryganoides.

Animals: Birds- Calidris alpina subsp. schinzii, Tringa totanus.

Corresponding categories
Nordic classification: 4221 Juncus gerardii-Festuca rubra -type, 4224 Blysmus rufus-Carex viridula-Centaurium spp. -type, 4226 Carex aquatilis-Calagrostis stricta -type, 4241 Eleocharis uniglumis-Agrostis stolonifera -type, 4251 Agrostis stolonifera-Triglochin palustre -type, 4253 Spergularia salina -type, 4321 Eleocharis parvula -type, 4322 Eleocharis acicularis -type

1640 **Boreal Baltic sandy beaches with perennial vegetation**

PAL.CLASS.: 16.1222, 16.132, 16.133, 16.2133 (1997 version)

1) Sheltered to exposed, gently sloping sand beaches influenced by wave action, but less influenced by tides than on the Atlantic coast, giving a higher representation of perennial plant species. Sand beaches along the Finnish and Swedish Baltic coast are relatively uncommon and usually small. Occasional stones or boulders may be scattered along the beach. The vegetation is often sparse and large areas of bare sand are common especially in the part closest to the shore. Sand-binding plants are common. The insect fauna on sand beaches is conspicuous. Drift belts of organic matter are often present

2) **Plants:** Ammophila arenaria, Lathyrus japonicus ssp. maritimus, Leymus arenarius, Atriplex littoralis, Salsola kali, Crambe maritima, Honkenya peploides, Cakile maritima, Elytrigia juncea ssp. boreoatlantica.

Animals: Insects- Spingonotus coerulans, Catoptria fulgida, Chomoderus affinis, Psyllioedes marcida, Pterophorus tridactylus, Euxoa cursoria, Photodes elymi, Apamea ophiogramma, Acteia praecox, Sphingonotus coerulans; Birds- Charadrius hiaticula, Calidris temminckii (in Sweden only in the northern part).

3) **Corresponding categories**

- **Nordic classification:** 4131 Ammophila arenaria-Leymus arenarius -type, 4215 Cakile maritima –

4) Associated with the following habitat types: Annual vegetation of drift lines (1210), Sandbanks which are slightly covered by sea water all the time (1110), in some cases also Baltic esker islands with sandy, rocky and shingle beach vegetation and sublittoral vegetation (1610).

1650 **Boreal Baltic narrow inlets**

PAL.CLASS.: 12.51 (1997 version)

1) Long and narrow bays in the Boreal Baltic sea area, which are partly separated from the open sea by a submerged sill. These inlets consist usually of soft mud. The salinity varies depending on the freshwater contribution or the salinity value of the Baltic Sea. The low tidal range and low salinity of the Baltic Sea creates an ecology that is different from that of the North Atlantic coasts.

2) **Plants:** Ceratophyllum demersum, Hippuris vulgaris, Myriophyllum spicatum, Phragmites australis, Potamogeton perfoliatus, Sagittaria sagittifolia, Schoenoplectus lacustris, Schoenoplectus tabernaemontani Algae: Cladophora aegagropila, Nitellopsis obtusa

Animals: Birds- Anas crecca, Anas platyrhynchos, Circus aeruginosus, Cygnus olor, Podiceps cristatus; Insects- Chironomus plumosus coll.; Crustaceans- Monoporeia affinis; Molluscs- Macoma baltica, Nucula tenuis, Syndosmya nitida, Thyasira flexuosa; Polychaetes- Maldane sarsi Sponges: Axinella rugosa, Phakellia spp., Mycale lingua, Polymastica spp., Vosmeria spp.

4) A river discharge to the innermost end of the bay is common, resulting in a density stratification of the water column. Narrow inlets unaffected or almost unaffected by man are very rare.
COASTAL SAND DUNES AND INLAND DUNES

Sea dunes of the Atlantic, North Sea and Baltic coasts

2110 Embryonic shifting dunes

1) Formations of the coast representing the first stages of dune construction, constituted by ripples or raised sand surfaces of the upper beach or by a seaward fringe at the foot of the tall dunes.

3) Corresponding categories:
United Kingdom classification: "SD4 Elymus farctus ssp. boreali-atlanticus foredune community".
Nordic classification: 16.2111 - "4121 Elytrigia juncea-typ".

2120 Shifting dunes along the shoreline with Ammophila arenaria (white dunes)

1) Mobile dunes forming the seaward cordon or cordons of dune systems of the coasts (16.2121, 16.2122 and 16.2123). Ammophilion arenariae, Zygophyllion fontanesii.

3) Corresponding categories
United Kingdom classification: " SD6 Ammophila arenaria mobile dune community".

2130

Fixed coastal dunes with herbaceous vegetation (grey dunes)

PAL.CLASS.: 16.221 to 16.227, 16.22B

1) Fixed dunes, stabilised and colonised by more or less closed perennial grasslands and abundant carpets of lichens and mosses, from the Atlantic coasts (and the English Channel) between the Straits of Gibraltar and Cap Blanc Nez, and the shores of the North Sea and the Baltic. Also similar dunes occur along the coasts of the Black Sea. In the case of the thermo-Atlantic coast, it is logical to include *Euphorbio Helichrysson* (code 16.222 - thermo Atlantic as far as Brittany) and *Crucianellion maritimae* (code 16.223 - Strait of Gibraltar as far as the southern Atlantic near Cape Prior in Galicia).

Sub-types

16.221 - Northern grey dunes with grass communities and vegetation from *Galio-Koelerion albescentis* (*Koelerion albescentis*), *Corynephorion canescens* p., *Sileno conicae-Cerastion semidecandri*.

16.222 - Biscay grey dunes (*Euphorbio-Helichrysson stoechadis*): dunes on stabilised humus soil infiltrated by dwarf bushes, with *Helichrysum stoechas*, *Artemisia campestris* and *Ephedra distachya*.

16.223 - Thermo-Atlantic grey dunes (*Crucianellion maritimae*): suffrutescent communities on more or less stabilised soils low in humus of the thermo-Atlantic coasts with *Crucianella maritima* and *Pancratium maritimum*.

16.225 - Atlantic dune (*Mesobromion*) grasslands: various sandy coastal sites characterised by herbaceous vegetation in the form of calcicole mesoxerocline grasslands, poor in nitrogen, corresponding to the communities of *Mesobromion* found by the sea (penetration of aero haline species); dunal grasslands composed of species characteristic of dry calcareous grasslands (34.32).

16.226 - Atlantic dune thermophile fringes: *Trifolio-Geranietea sanguinei*: *Galio maritimi-Geranion sanguinei*, *Geranium sanguineum* formations (34.4) on neutro basic soils rich in calcium and poor in nitrogen.

16.227 - Dune fine-grass annual communities: sparse pioneer formations (35.2, 35.3) of fine grasses rich in spring-blooming therophytes characteristic of oligotrophic soils (nitrogen poor sand or very superficial soils, or on xerocline to xerophile rocks) (*Thero-Airion* p., *Nardo-Galion saxatile* p., *Tuberarion guttatae* p.).

16.22B - Pontic fixed dunes - fixed dunes of the coasts of the Black Sea

The vegetation may be a closed cover of grassland, sparse annual grassland on sand or dominated by mosses and lichen; the content of limestone (Ca2+) may vary greatly and is generally diminishing with age and succession towards brown dune systems (dune heathland).

3) **Corresponding categories**

United Kingdom classification: 16.221 -"SD12 Carex arenaria-Festuca ovina-Agrostis capillaris grassland", "SD8 Festuca rubra-Galium verum fixed dune grassland", "SD7 Ammophila arenaria-Festuca rubra semi-fixed dune community" and "SD11 Carex arenaria-Cornicularia aculeata dune community". 16.226 - "SD9b Ammophila arenaria-Arrhenatherum elatius dune grassland *Geranium sanguineum* sub-community". 16.227 -
most likely, certain sub-communities of the type "SD7 Ammophila arenaria-Festuca rubra semi-fixed dune community" and "SD11 Carex arenaria-Cornicularia aculeata dune community".

German classification: "1003 Dünenrasen (Graudüne)", "1003a Dünenpionierrasen mit einjähr. Vegetation (Thero-Airion)", "1003b Dünenrasen mit geschlossener Narbe u. überwieg. ausdauernden Arten (Graudüne)".

Nordic classification: "4141 Corynephorus canescens-typ" and "4142 Festuca rubra-Hieracium umbellatum-typ".

4) There is a transition towards communities of Mesobromion (34.31 - 34) in the following cases: old mesophile grasslands of dune slacks and inner dunes (Anthyllido Thesietum), frequently in mosaic with communities of Salix repens and particularly developed on the west face of the dunes; grasslands with Himantoglossum hircinum of the dunes in the De Haan area.

Dune scrubs (16.25) and humid dune slacks (16.3) with distinct vegetation form closely knit complexes with grey dunes devoid of ligneous vegetation.

2140 * Decalcified fixed dunes with Empetrum nigrum

PALCLASS.: 16.23

1) Decalcified dunes colonised by Empetrum nigrum heaths of the coasts. Syntaxa associated to this habitat type: Empetrition nigrī, Calluno Genistion pilosae p., Ericion tetralicis p.

- The term "fixed" should be taken to mean the opposite of "shifting". The psychrophilic coastal association Carici trinervis-Callunetum vulgaris de Foucault & Gehu 78 may be included here.

2) Plants: Carex arenaria, Empetrum nigrum, Genista tinctoria, Pyrola rotundifolia.

3) Corresponding categories

United Kingdom classification: "H11b Calluna vulgaris-Carex arenaria heath community, Empetrum nigrum ssp. nigrum sub-community".

German classification : "100401 Krähenbeer-Heide der Küsten".In Germany highly endangered coastal Empetrum nigrum heathland on the Geest are included.

Nordic classification: "4143 Calluna vulgaris-Empetrum nigrum-Carex arenaria-typ".

2150 * Atlantic decalcified fixed dunes (*Calluno-Ulicetea*)
PAL.CLASS.: 16.24

1) Decalcified dunes of France, Belgium and Britain, colonised by heaths of the alliances *Calluno-Genistion* or *U licion minoris*, and of Iberia, colonised by heaths of the alliance *E ricion umbellatae*.

2) **Plants:** *Calluna vulgaris, Carex arenaria, C. trinervis, Erica ciliaris, E. cinerea, E. scoparia, Festuca vasconcensis, Pseudoarrhenatherum longifolium (Arrhenatherum thorei), Ulex australis.*

3) **Corresponding categories**
United Kingdom classification: "H11a *Calluna vulgaris-Carex arenaria* heath-*Erica cinerea* sub-community" and "H11c *Calluna vulgaris-Carex arenaria* species poor sub-community" and "H1d *Calluna vulgaris-Festuca ovina* heath *Carex arenaria* sub-community".

4) Pioneer phase of this habitat: decalcified fixed dunes colonised by *Corynephorus canescens* and *Cladonia* spp. (64.1 x 35.2).

2160 Dunes with *Hippophae rhamnoides*
PAL.CLASS.: 16.251

1) Sea-buckthorn formations of forest colonisation in both dry and humid dune depressions.

2) **Plants:** *Hippophae rhamnoides*.

2170 Dunes with *Salix repens ssp. argentea* (*Salicion arenariae*)
PAL.CLASS.: 16.26

1) *Salix repens* communities (*Salicion arenariae*), colonising wet dune slacks. Following the lowering of the ground water table or accumulation of drift sand, these communities may develop into mesophilous communities as the *Pyrolo-Salicetum* (with *Pyrola rotundifolia, Viola canina, Monotropa hypopitys*) or, into xerophilous *Salix* communities (with *Carlina vulgaris, Thalictrum minus*) or into *Salix repens* communities with *Mesobromion* elements.

2) **Plant species:** *Salix repens ssp. argentea* (i.e. *Salix arenaria*).

3) **Corresponding categories**
United Kingdom classification : "SD16 *Salix repens-Holcus lanatus* dune slack".
German classification : "1006b Kriechweiden-Teppiche der Dünen".
4) This habitat forms mosaics with other dune slack vegetation containing Salix arenaria but which is rich in bryophytes and referable to the Caricion davallianae (16.33), as well as mosaics with dune grasslands and with thickets with Rosa pimpinellifolia. This habitat is often invaded by Hippophae rhamnoides and Ligustrum vulgare.

2180 Wooded dunes of the Atlantic, Continental and Boreal region

PAL.CLASS.: 16.29

1) Natural or semi-natural forests (long established) of the Atlantic, Continental and Boreal region coastal dunes with a well developed woodland structure and an assemblage of characteristic woodland species. It corresponds to oak groves and beech-oak groves with birch (*Quercion robori-petraeae*) on acid soils, as well as forests of the *Quercetalia pubescenti-petraeae* order. Pioneer stages are open forests with *Betula* spp. and *Crataegus monogyna*, mixed forests with *Fraxinus excelsior*, *Quercus robur*, *Ulmus minor* and *Acer pseudoplatanus* or, in wet dune slacks, pioneer forests with *Salix alba* which develop into humid mixed forests or marsh forests. On southern atlantic coasts, it mainly corresponds to mixed *Pinus pinaster-Quercus ilex* forests, forests of *Quercus suber* and *Quercus robur* or forest stage with *Quercus robur* or *Quercus pubescens*. On Baltic coasts also pioneer forests of *Alnus* spp. or *Pinus sylvestris*.

2) Plant species are highly varied and depend on local site conditions

3) **Corresponding categories**

 German classification: "430804 Buchenbuschwald (auf Ostseedünen)", "430801 Traubeneichen-Hainbuchenwald (küstennah, gischtbeeinflußt, F02)", "43080501 Eichen-Trockenwald lalkarmer Standorte (küstennah, gischtbeeinflußt, F02)", "440202 trockener Sandkiefernwald (küstennah, gischtbeeinflußt, F02)".

4) This habitat type include semi-natural forests with a typical undergrowth, spontaneously developed from old plantations. These forests are generally associated with dune scrubs (preforest stages-16.25), dune moors, grey dunes (16.22) and wet dune slacks (16.3).

2190 Humid dune slacks

PAL.CLASS.: 16.3 = 16.31 to 16.35

1) Humid depressions of dunal systems. Humid dune-slacks are extremely rich and specialised habitats very threatened by the lowering of water tables.
Sub-types:
16.31 - Dune-slack pools (*Charetum tomentosae, Elodeetum canadense, Hippuridetum vulgaris, Hottonietum palustris, Potametum pectinati*): fresh-water aquatic communities (cf. 22.4) of permanent dune-slack water bodies.
16.32 - Dune-slack pioneer swards (*Juncenion bufonii p.: Gentianoo-Erythraeetum littoralis, Hydrocotylo-Baldellion*): pioneer formations of humid sands and dune pool fringes, on soils with low salinity.
16.33 - Dune-slack fens: calcareous and, occasionally, acidic fen formations (cf. 54.2, 54.4, in particular 54.21, 54.2H, 54.49), often invaded by creeping willow, occupying the wettest parts of dune-slacks.
16.34 - Dune-slack grasslands: humid grasslands and rushbeds (see 37.31, 37.4) of dune-slacks, also often with creeping willows (*Salix rosmarinifolia, S. arenaria*).
16.35 - Dune-slack reedbeds, sedgebeds and canebeds: reedbeds, tall-sedge communities and canebeds (cf. 53.1, 53.2, 53.3) of dune-slacks.

3) Corresponding categories
United Kingdom classification: "SD13 Salix repens-Bryum pseudotriquetrum dune slack community", "SD14 Salix repens-Campylium stellatum dune slack community", "SD15 Salix repens-Calliergon cuspidatum dune slack community", "SD16 Salix repens-Holcus lanatus dune slack community" and "SD17 Potentilla anserina-Carex nigra dune slack community".

21A0 Machairs (*in Ireland*)

PAL.CLASS.: 1A

1) Complex habitat comprised of a sandy coastal plain resulting partially from grazing and/or rotational cultivation, in an oceanic location with a cool, moist climate. The wind blown sand has a significant percentage of shell derived material, forming a lime rich soil with pH values normally greater than 7. Vegetation is herbaceous, with a low frequency of sand binding species.

2) Plants: *Cochlearia scotica, Dactylorhiza fuchsii ssp. hebridensis, Euphrasia marshallii, Festuca rubra, Galium verum, Lotus corniculatus, Plantago lanceolata, Poa pratensis, Trifolium repens*.

4) Lakes (ponds and small lakes in Scotland) of widely varying salinity, pH and chemical composition, transitions to saltmarsh and blanket bog are associated habitats. In the United Kingdom, twelve different types of vegetation under the National Vegetation Classification can be identified.

Sea dunes of the Mediterranean coast

2210 Crucianellion maritimae fixed beach dunes
PAL.CLASS.: 16.223

1) Fixed dunes of the western and central Mediterranean, of the Adriatic, of the Ionian Sea and North Africa with Crucianella maritima, Pancratium maritimum.

2) Plants: Crucianella maritima, Pancratium maritimum.

2220 Dunes with Euphorbia terracina
PAL.CLASS.: 16.224

1) Coastal dune grassland communities, with, among others, Euphorbia terracina, Silene nicaeensis, Ephedra distachya and Silene subconica.

2) Plants: Euphorbia terracina, Ephedra distachya, Silene nicaeensis, S. subconica.

2230 Malcolmietalia dune grasslands
PAL.CLASS.: 16.228

1) Associations with many small annuals and often abundant ephemeral spring bloom, with Malcolmia lacera, M. ramosissima, Evax astericiflora, E. lusitanica, Anthyllis hamosa, Linaria pedunculata, of deep sands in dry interdunal depressions of the coasts. They are dunal representatives of 35.4.

2) Plants: Malcolmia lacera, M. ramosissima, Evax astericiflora, E. lusitanica, Anthyllis hamosa, Linaria pedunculata.

2240 Brachypodietalia dune grasslands with annuals
PAL.CLASS.: 16.229

1) Dunal formations of 6220 - Pseudo-steppe with grasses and annuals of the Thero-Brachypodietea: Meso- and thermo-Mediterranean xerophile, mostly open, short-grass perennial grasslands rich in therophytes; therophyte communities of oligotrophic soils on base-rich, often calcareous substrates.

2) Plants: Brachypodium spp.
2250 * Coastal dunes with Juniperus spp.

PAL.CLASS.: 16.27 and 64.613

1) Juniper formations [Juniperus turbinata ssp. turbinata (=J. lycia, J. phoenicea ssp. lycia), J. macrocarpa, J. navicularis (=J. transtagana, J. oxycedrus ssp. transtagana), J. communis] of Mediterranean and thermo-Atlantic coastal dune slacks and slopes (Juniperion lyciae). Juniperus communis formations of calcareous dunes. This habitat type includes the communities of J. communis from the calcareous dunes of Jutland and the communities of J. phoenicea ssp. lycia in Rièges woods in the Camargue.

2) Plants: Juniperus turbinata ssp. turbinata, J. macrocarpa, J. navicularis, J. communis, J. oxycedrus.

4) In the Mediterranean and Atlantic coasts of the Iberian peninsula this habitat type is associated with dune scrubs of Corema album (Rubio-Coremion albi) and substitution matorral of the Halimium halimifolium dune scrubs (Stauracantha-Halimietalia)

2260 * Cisto-Lavenduletalia dune sclerophyllous scrubs

PAL.CLASS.: 16.28

1) Sclerophyllous or lauriphyllus scrubs established on dunes of the Mediterranean and Warm-Temperate Humid regions. Codes of 32 may be used in addition to 16.28 to precise the habitat. Also similar sclerophyllous dune vegetation included in 16.28 of the Pistacio-Rhamnetalia and Cisto-Micromerititia.

2270 * Wooded dunes with Pinus pinea and/or Pinus pinaster

PAL.CLASS.: 16.29 x 42.8

1) Coastal dunes colonised by Mediterranean and Atlantic thermophilous pines, corresponding to the substitution facies or in some stations climax formations of evergreen oak of artificial origin (Quercetalia ilicis or Ceratonio-Rhamnetalia).

2) Plants: Pinus pinea, P. pinaster, P. halepensis, Juniperus macrocarpa, J. turbinata ssp. turbinata.

4) Long-established plantations of these pines, within their natural area of occurrence, and with an undergrowth basically similar to that of paraclimacic formations, are included in this habitat type

Inland dunes, old and decalcified
2310 Dry sand heaths with Calluna and Genista
PAL.CLASS.: 64.1 x 31.223

1) Dunes of the North Sea and Baltic plains, formed of quartzic sands originating in redeposited and reworked glacial drift and outwash. They are highly siliceous in the Netherlands, northern Belgium and north-western Germany, progressively slightly less oligotrophic and with a more continental species assemblage in north-eastern Germany, Poland and the eastern Baltic plain. The dune systems, particularly the large ones, harbour a unique ensemble of interacting communities and harbour many specialised and localised organisms. They have considerably regressed and the remaining examples are fragile and often threatened. Vegetation is dominated by heaths with Calluna and Genista.

2) Plants: Calluna vulgaris, Genista anglica, G. pilosa.

3) Corresponding categories
Nordic classification: "5114 Genista spp.-Calluna vulgaris-typ", "5115 Calluna vulgaris-typ".

2320 Dry sand heaths with Calluna and Empetrum nigrum
PAL.CLASS.: 64.1 x 31.227

1) Coastal non-dunal Calluna vulgaris and Empetrum nigrum heaths, formed on quartzic sands originating in redeposited and reworked glacial drift and outwash.

2) Plants: Calluna vulgaris, Empetrum nigrum.

3) Corresponding categories
Nordic classification: "4143 Calluna vulgaris-Empetrum nigrum-Carex arenaria-typ".

2330 Inland dunes with open Corynephorus and Agrostis grasslands
PAL.CLASS.: (64.11 or 64.12) x 35.2

1) Open formations found on inland dunes with dry siliceous soils, of Atlantic, sub-Atlantic and Mediterraneo-montane distribution, often species-poor and with a strong representation of annuals. It includes formations of unstable Germano-Baltic fluvo-glacial inland sands with Corynephorus canescens, Carex arenaria, Spergula morisonii, Teesdalia nudicaulis and carpets of fruticose lichens (Cladonia, Cetraria) (64.11) and other grasslands of more stabilised Germano-Baltic fluvo-glacial inland dune systems with Agrostis spp. and Corynephorus canescens or other acidophilous grasses (64.12).

2) Plants: 64.11 - Corynephorus canescens, Carex arenaria, Spergula morisonii, Teesdalia nudicaulis, Cladonia, Cetraria; 64.12 - Agrostis spp., Corynephorus canescens.

3) Corresponding categories

2340 * Pannonic inland dunes

PAL.CLASS.: 64.71

1) Inland dunes of the Pannonic plain and of neighbouring basins. In former days widely distributed as a result of hay harvesting and grazing. Good examples exist in mosaics of different habitats with open sand, dune lichen communities, pioneer swards with many therophytes, open and closed swards. Only these habitat complexes should be considered under this title. For steppes and meadow-steppes on stabilised sand or sandy soils, not associated with dune complexes, see habitat 6260 (34.A1).

3) **Corresponding categories**
 Austrian syntaxa: *Thymo angustifolii-Corynephoretum canescentis* (fragmentary in disturbed sites).

4) Habitat complexes with a variety of particular plant communities and microsites.

FRESHWATER HABITATS

Standing water

3110 Oligotrophic waters containing very few minerals of sandy plains (Littorelletalia uniflorae)

PAL.CLASS.: 22.11 x 22.31

1) Shallow oligotrophic waters with few minerals and base poor, with an aquatic to amphibious low perennial vegetation belonging to the *Littorelletalia uniflorae* order, on oligotrophic soils of lake and pond banks (sometimes on peaty soils). This vegetation consists of one or more zones, dominated by *Littorella*, *Lobelia dortmanna* or *Isoetes*, although not all zones may not be found at a given site.

3) **Corresponding categories**

German classification: "24020201 kalkarmer, oligotropher See des Tief- und Hügellands", "24020301 kalkarmes, oligotrophes, sich selbst überlassenes Abbaugewässer".

Nordic classification: "6413 Lobelia dortmanna-Isoetes spp.typ", "6414 Littorella uniflora-Lobelia dortmanna-typ". In the Boreal region this habitat is particularly found on glacio fluvial soil and with usually dense isoetid vegetation, sparse reedbeds, helophytic vegetation and carpets of submerged bryophytes.

4) This habitat is found in association with heath (31.1) and Nanocyperion (22.32) communities.

In France and Ireland this habitat occurs, in particular, in heathland of sandy plains on podzols, where the water table occurs at the surface.

3120

Oligotrophic waters containing very few minerals generally on sandy soils of the West Mediterranean with Isoetes spp.

PAL.CLASS.: 22.11 x 22.34

1) Dwarf amphibious vegetation of oligotrophic waters with few minerals, mostly on sandy soils of the Mediterranean region and some irradiations in the thermo-Atlantic sector, and belonging to the Isoeto-Nano-Juncetea. Short grasslands of temporary ponds (the Annex I priority habitat type 3170) is a particular subtype (temporary and very shallow waters).

2) **Plant species**: high level - Isoetes velata, I. setacea, Pilularia minuta, #Marsilea strigosa; low level - Isoetes histrix, I. durieui, Serapias spp. (Serapion).

3) **Correspondances**:
In the Azores the corresponding association is Anthemido-Menthetum pulegii Lüp., with Anthemis nobilis, Mentha pulegium, Juncus bulbosos, Hypericum humifusum, Scirpus setacea, Peplis portula, Isoetes azorica

3130

Oligotrophic to mesotrophic standing waters with vegetation of the Littorelletea uniflorae and/or Isoeto-Nanojuncetea

PAL.CLASS.: 22.12 x (22.31 and 22.32)

1) 22.12 x 22.31 - aquatic to amphibious short perennial vegetation, oligotrophic to mesotrophic, of lake, pond and pool banks and water-land interfaces belonging to the Littorelletalia uniflorae order.

22.12 x 22.32 - amphibious short annual vegetation, pioneer of land interface zones of lakes, pools and ponds with nutrient poor soils, or which grows during periodic drying of these standing waters: Isoeto-Nanojuncetea class.

These two units can grow together in close association or separately. Characteristic plant species are generally small ephemerophytes.
2) **Plants**: 22.12 x 22.31: *Littorella uniflora*, *Luronium natans, Potamogeton polygonifolius, Pilularia globulifera, Juncus bulbosus spp. bulbosus, Eleocharis acicularis, Sparganium minimum.*

3) **Corresponding categories**

German classification: "240301 mesotropher See (Bleisee) (mit Zwergbinsenfluren -wechsnass-, P143)", "240306 meso- bis eutrophes, sich selbst überlassenes Abbaugewässer (mit Zwergbinsenfluren -wechsnass-, P143)".

Nordic classification: "6411 Eleocharis acicularis-typ", "6412 Ranunculus reptans-Subularia aquatica-typ".

in the Azores the corresponding association is *Isoetetum azorica* Lüp.

4) This habitat type could also develop in wet dune slacks (see 16.32 in 2190, included in Annex I).

In the Atlantic region, such lakes can shelter glacial relict species, e.g. fish such as *Selvelinus alpinus*.

Areas with a variable hydrological system, periodically lacking vegetation due to trampling, should not be included.

3140 Hard oligo-mesotrophic waters with benthic vegetation of *Chara* spp.

PAL.CLASS.: (22.12 or 22.15) x 22.44

1) Lakes and pools with waters fairly rich in dissolved bases (pH often 6-7) (21.12) or with mostly blue to greenish, very clear, waters poor (to moderate) in nutrients, base-rich (pH often >7.5) (21.15). The bottom of these unpolluted water bodies are covered with charophyte, *Chara* and *Nitella*, algal carpets. In the Boreal region this habitat type includes small calcareous-rich oligo-mesotrophic gyttja pools with dense *Chara* (dominating species is *C. strigosa*) carpets, often surrounded by various eutrophic fens and pine bogs.

2) **Plants**: *Chara* spp., *Nitella* spp.

3) **Corresponding categories**

Nordic classification: "633 Långskottsvegetation med kransalger", "6421 Littorella uniflora-Chara spp. -typ"

3150 Natural eutrophic lakes with *Magnopotamion* or *Hydrocharition* - type vegetation

PAL.CLASS.: 22.13 x (22.41 or 22.421)
1) Lakes and ponds with mostly dirty grey to blue-green, more or less turbid, waters, particularly rich in dissolved bases (pH usually > 7), with free-floating surface communities of the Hydrocharition or, in deep, open waters, with associations of large pondweeds (Magnopotamion).

3) **Corresponding categories**
 Nordic classification: "632 Potamogeton spp.-huvudtyp", "6511 Lemna minor-Spirodela polyrrhiza-typ".

3160 Natural dystrophic lakes and ponds

PAL.CLASS.: 22.14

1) Natural lakes and ponds with brown tinted water due to peat and humic acids, generally on peaty soils in bogs or in heaths with natural evolution toward bogs. pH is often low, 3 to 6. Plant communities belong to the order Utricularietalia.

 Animals: Odonata (dragonflies and damselflies)

3) **Corresponding categories**
 German classification: "240101 natürliches, distrophes Gewässer (z. B. Kolk, Moorauge, Randlagg). Nordic classification : "6211 Nuphar-typ", "652 Vattenmossvegetation".

3170 Mediterranean temporary ponds

PAL.CLASS.: 22.34

1) Very shallow temporary ponds (a few centimetres deep) which exist only in winter or late spring, with a flora mainly composed of Mediterranean therophytic and geophytic species belonging to the alliances Isoetion, Nanocyperion flavescentis, Presliion cervinae, Agrostion salmanticae, Heliochloion and Lythriion trivagae.

batardae, #M. strigosa, Mentha cervina, Ranunculus dichotomiflorus, R. lateriflorus, Serapis lingua, S. neglecta, S. vomeracea.

3) **Corresponding categories**

In the Azores the corresponding association is *Anthemido-Menthetum pulegii* Lüp., with *Anthemis nobilis*, *Mentha pulegium*, *Juncus bulbosos*, *Hypericum humifusum*, *Scirpus setacea*, *Peplis portula*, *Isoetes azorica*.

3180

* Turloughs

PAL.CLASS.: 22.5

1) Temporary lakes principally filled by subterranean waters and particular to karstic limestone areas. Most flood in the autumn and then dry up between April and July. However, some may flood at any time of the year after heavy rainfall and dry out again in a few days; others, close to the sea, may be affected by the tide in summer. These lakes fill and empty at particular places. The soils are quite variable, including limestone bedrock, marls, peat, clay and humus, while aquatic conditions range from ultra oligotrophic to eutrophic. The vegetation mainly belongs to the alliance *Lolio-Potentillian anserinae* Tx. 1947, but also to the *Caricion davallianae* Klika 1934.

2) Plants: *Cinclidotus fontinaloides*, *Fontinalis antipyretica* (Bryophyta).

Animals: *Tanymastix stagnalis* (wet phase) and the beetles *Agonum lugens*, *A. livens*, *Badister meridionalis*, *Blethisa multipunctata* and *Pelophila borealis* (dry phase) 15.

3190

Lakes of gypsum karst

PAL.CLASS.: 22.12p

1) Small permanent lakes that have developed in springs or spring complexes of active gypsum karst areas. These water bodies are characterised by large fluctuations of water level (up to 2.5 m) which is related with the level of the underlying water table and amount of precipitation. Maximum depth of the pools does not exceed 7 m, but the stratification is well-expressed. Intensive gypsum solution leads to high saturation of Ca$^{2+}$ and SO$_4^{2-}$ ions in water. The unusual conditions allow unique colonies and mats of green and purple sulphurous bacteria to develop in the lakes. Communities of *Charetea*, *Lemnetea* and *Potamogetonion* are the dominant elements of the water vegetation.

15 The animals listed should not be regarded as characteristic in any strict sense; both fauna and flora of turloughs are characteristic of intermittently flooded zones.
2) **Plants**: *Lemna trisulca, Chara globularis, Chara contraria, Warnstorfia exannulata, Ceratophyllum demersum, Potamogeton pectinatus, Potamogeton lucens, Schoenoplectus lacustris, Sparganium erectum*

4) These lakes are similar in some respects to 3180 Turloughs but that habitat is found in limestone not gypsum areas and does not support mats of green and purple bacteria

31A0

Transylvanian hot-spring lotus beds

PAL.CLASS.: 22.43113

1) Formations of *Nymphaea lotus* of geo-thermal waters (unit 66.94) of Petea Lake, western Romania.

2) **Plants** *Nymphaea lotus, Ceratophyllum demersum, Sparganium erectum ssp neglectum, Butomus umbellatus, Alisma plantago-aquatica, Phragmites australis.*

Animals: Molluscs (Gastropoda) – *Melanopsis parreyss*, Fish – *Scardinius erythrophalmus racovitzae*.

6) Hungarian examples (e.g. Budapest) are introductions.

Running water

Sections of water courses with natural or semi-natural dynamics (minor, average and major beds) where the water quality shows no significant deterioration

3210

Fennoscandian natural rivers

PAL.CLASS.: -

1) Boreal and hemiboreal natural and near-natural river systems or parts of such systems containing nutrient-poor water. The water level shows great amplitude, up to 6 m during the year. Especially during the spring, the water level is high. The water-dynamics can vary and contain waterfalls, rapid streams, calm water, and small lakes adjacent to the river. The water erosion causes a higher amount of nutrients towards the river-mouth, where sedimentation starts. In higher levels the rivers are characterized by great, very cold water flows, coming from glaciers, deep snowbeds and large snow-covered areas in mire- and woodlands. In addition the water surface in placid river sections is frozen to ice every winter. These circumstances create ecosystems unique to this part of Europe.

2) **Plants** *Salix daphnoides, Myricaria germanica, Taraxacum crocodies, Cinna latifolia, Sagittaria natans x sagittifolia, Matteuccia struthiopteris, Stellaria nemorum ssp. nemorum, Sparganium glomeratum, Carex aquatilis, Hygrohypnum ochraceum*

Animals : Molluscs- *Margaritifera margaritifera*. Insects- *Plecoptera spp., Baetis spp., Centroptilum spp.*, Fish- *Salmo salar, S. salar m. sebago, S. trutta trutta, S. trutta lacustris,*

#
Nilsson, Ch. (1979). - Floraforändringar vid kraftverksutbyggnad. Ibid. 73: 266.

3220 Alpine rivers and the herbaceous vegetation along their banks

PAL.CLASS.: 24.221 and 24.222

1) 24.221 - Open assemblages of herbaceous or suffrutescent pioneering plants, rich in alpine species, colonising gravel beds of streams with an alpine, summer-high, flow regime, formed in northern boreal and lower Arctic mountains, hills and sometimes lowlands, as well as in the alpine and subalpine zones of higher, glaciated, mountains of more southern regions, sometimes with abyssal stations at lower altitudes (Epilobion fleischeri p.).
24.222 - Open or closed assemblages of herbaceous or suffrutescent pioneering plants, colonising, within the montane or sub-montane levels, gravel beds of streams with an alpine, summer-high, flow regime, born in high mountains (Epilobion fleischeri p., Calamagrostion pseudophragmitis).

3) Corresponding categories
Nordic classification: "7211 Calamagrostis stricta-Lotus corniculatus-Oxyria digyna-typ", "7214 Rhacomitrium canescens-Oxyria digyna -typ", "7222 Eriophorum scheuchzeri -typ", "7223 Calamagrostis stricta -typ" and "7224 Carex aquatilis-Equisetum fluviatile -typ".

3230 Alpine rivers and their ligneous vegetation with Myricaria germanica

PAL.CLASS.: 24.223 x 44.111

1) Communities of low shrubby pioneers invading the herbaceous formations of 24.221 and 24.222 on gravel deposits rich in fine silt, of mountain and northern boreal streams with an alpine, summer-high, flow regime. Myricaria germanica and Salix spp. are characteristic (Salici-Myricarietum).

2) Plants: Myricaria germanica, Salix elaeagnos, Salix purpurea ssp. gracilis, Salix daphnoides, Salix nigricans.
3) **Corresponding categories**
Nordic classification: "7212 Myricaria germanica-typ".

3240 **Alpine rivers and their ligneous vegetation with Salix elaeagnos**

PAL.CLASS.: 24.224 x 44.112

1) Thickets or woods of, among others, *Salix* spp., *Hippophae rhamnoides*, *Alnus* spp., *Betula* spp., on stream gravels of mountain and northern boreal streams with an alpine, summer-high, flow regime. Formations of *Salix elaeagnos*, *Salix purpurea* ssp. *gracilis*, *Salix daphnoides*, *Salix nigricans* and *Hippophae rhamnoides* of higher gravel shoals in Alpine and peri-Alpine valleys.

2) **Plants**: *Salix elaeagnos*, *Salix purpurea* ssp. *gracilis*, *Salix daphnoides*, *Salix nigricans* and *Hippophae rhamnoides*.
3250

Constantly flowing Mediterranean rivers with *Glaucium flavum*

PAL.CLASS.: 24.225

1) Communities colonising gravel deposits of rivers with a Mediterranean, summer-low, flow regime, with formations of the *Glaucion flavi*.

2) **Plants:** *Myricaria germanica, Erucastrum nasturtiifolium, Glaucium flavum, Oenothera biennis.*

3260

Water courses of plain to montane levels with the *Ranunculion fluitantis* and *Callitricho-Batrachion* vegetation

PAL.CLASS.: 24.4

1) Water courses of plain to montane levels, with submerged or floating vegetation of the *Ranunculion fluitantis* and *Callitricho-Batrachion* (low water level during summer) or aquatic mosses.

2) **Plants:** *Ranunculus saniculifolius, R. trichophyllus, R. fluitans, R. peltatus, R. penicillatus ssp. penicillatus, R. penicillatus ssp. pseudofluitantis, R. aquatilis, Myriophyllum spp., Callitriche spp., Sium erectum, Zannichellia palustris, Potamogeton spp., Fontinalis antipyretica.*

3) **Corresponding categories**

 Nordic classification: "6621 *Myriophyllum alterniflorum-Potamogeton alpinus-Fontinalis antipyretica-typ*."

4) This habitat is sometimes associated with *Butomus umbellatus* bank communities. It is important to take this point into account in the process of site selection.

3270

Rivers with muddy banks with *Chenopodion rubri* p.p. and *Bidention* p.p. vegetation

PAL.CLASS.: 24.52

1) Muddy river banks of plain to submontane levels, with annual pioneer nitrophilous vegetation of the *Chenopodion rubri* p.p. and the *Bidention* p.p. alliances. During the spring and at the beginning of the summer, sites look like muddy banks without any vegetation (developes later in the year). If the conditions are not favourable, this vegetation has a weak development or could be completely absent.
2) **Plants:** *Chenopodium rubrum, Bidens frondosa, Xanthium sp., Polygonum lapathifolium.*

3) **Corresponding categories**
German classification: "230605 zeitweilig trockenfallende Schlammfläche an fließenden Gewässern (krautreich, P026)", "230605 zeitweilig trockenfallende Schlammfläche an fließenden Gewässern (krautreich, P026)".

4) This habitat is found in close association with dense populations of the genus *Bidens* or of neophitic species. In order to support the conservation of these communities, with a late or irregular annual development, it is important to take into account bank widths of 50 to 100 m and even parts without vegetation (24.51).

3280

Constantly flowing Mediterranean rivers with Paspalo-Agrostidion species and hanging curtains of Salix and Populus alba

PAL.CLASS.: 24.53

1) Nitrophilous annual and perennial grass and sedge formations of the alluvial banks of large Mediterranean rivers, with *Paspalum paspaloides, P. vaginatum, Polypogon viridis* (= *Agrostis semiverticillata*), *Cyperus fuscus*, and hanging curtains of *Salix* spp and *Populus alba*.

2) **Plants:** *Paspalum paspaloides, P. vaginatum, Polypogon viridis* (= *Agrostis semiverticillata*), *Cyperus fuscus, Salix* spp., *Populus alba*.

3290

Intermittently flowing Mediterranean rivers of the Paspalo-Agrostidion

PAL.CLASS.: 24.16 and 24.53

1) Intermittently flowing Mediterranean rivers with *Paspalo-Agrostidion* communities. They correspond to the river type 24.53, but with the particularity of an interrupted flow and a dry bed during a part of the year. The bed of the river can be completely dry or left with some pools.

2) **Plants:** *Polygonum amphibium, Ranunculus fluitans, Potamogeton natans, P. nodosus, P. pectinatus*.

32A0

Tufa cascades of karstic rivers of the Dinaric Alps

PAL.CLASS.: 24.423

1) Tufa barrages forming large vegetated barriers across rivers in karstic regions of the Dinaric Alps, with well known examples in the Plitvice Lakes National Park, Croatia. The vegetation is rich in algae, bryophytes and ferns (*Eucladio-Adiantetum*) and tufa is being actively deposited.
2) **Plants:** Eucladium verticillatum, Didymion tophaceus, D. bosniacus, Cinclidotus aquaticus, C. riparius, Bryum hentricosum, Fontinalis antipyretica, Cratoneuron commutatum, Platyhypnidium rusciforme, Anrea pinguis, Pellia fabbronianas.

Animals: Polycelis cornuta, Planaria gonocephala, Ancylus fluviatilis, Propanus volki, Rivulogammarus balcanicus, Fontogammarus dalmatinus, Wilhelmina salopiensis.

3) **Corresponding categories**

Croatian classification: "A.3.5 Sedrotvorne riječne zajednice" and "A.3.6 Sedrotvorna vegetacija na slapovima".

4) Similar vegetation can also occur with habitat type 7220 *Petrifying springs with tufa formation* (Cratoneuron) but that habitat type is associated with springs not rivers.

Državni zavod za zaštitu prirode (2009). *Nacionalna klasifikacija staništa Republike Hrvatske (III. dopunjena verzija)*

http://www.dzzp.hr/dokumenti_upload/20100527/dzzp201005271405280.pdf

TEMPERATE HEATH AND SCRUB

4010 **Northern Atlantic wet heaths with *Erica tetralix***

PAL.CLASS.: 31.11

1) Humid, peaty or semi-peaty heaths, other than blanket bogs, of the Atlantic and sub-Atlantic domains.

2) **Plants:** Erica tetralix.

3) **Corresponding categories**

Nordic classification: "5121 Erica tetralix-typ".

4020 **Temperate Atlantic wet heaths with *Erica ciliaris* and *Erica tetralix***

PAL.CLASS.: 31.12

1) Hygrophilous heaths of areas with a temperate oceanic climate, on semi-peaty or dried-out soils, with surface minerals in the case of peaty soils (hydromor), with vegetation of the alliances Genistion micrantho-anglicae and Ulicion minoris: Ulici minoris-Ericetum ciliaris, Ulici gallii-Ericetum mackaianae, Ulici minoris-Ericetum tetralicis (Schwickerath 33 Tuxen 37), Cirsio filipenduli-Ericetum ciliaris.

2) **Plants:** Centaurea uliginosa, Erica ciliaris, E. mackaiana, E. tetralix, Euphorbia polygaliphylla, Genista anglica, G. carpetana, G. micrantha, Sphagnum spp., Ulex minor var. lusitanicus.
3) **Corresponding categories**

United Kingdom classification: "H3 Ulex minor-Agrostis heath", "H4 Ulex galli-Agrostis heath" and "M16 Erica tetralix-Sphagnum compactum" where these contain Erica ciliaris.

4030 European dry heaths

PAL.CLASS.: 31.2

1) **Mesophile or xerophile heaths on siliceous, podsolic soils in moist Atlantic and sub-Atlantic climates of plains and low mountains of Western, Central and Northern Europe.**

Sub-types:

- **31.21 - Sub-montane Vaccinium-Calluna heaths.** *Calluno-Genistion pilosae p.* *(Vaccinion vitis-idaeae p.)*: *Vaccinio myrtilli-Callunetum s.l. i.a.*

 Heaths rich in *Vaccinium* spp., usually with *Calluna vulgaris*, of the northern and western British Isles, the Hercynian ranges and the lower levels of the Alps, the Carpathians, the Pyrenees and the Cordillera Cantabrica.

- **31.22 - Sub-Atlantic Calluna-Genista heaths.** *Calluno-Genistion pilosae p.*

 Low *Calluna* heaths often rich in *Genista*, mostly of the Germano-Baltic lowlands. Similar formations occurring in British upland areas, montane zones of high mountains of the western Mediterranean basin and high rainfall Adriatic influenced areas are most conveniently listed here.

- **31.23 - Atlantic Erica-Ulex heaths.** *Ulicenion minoris*; *Daboecenion cantabricae p.*; *Ulicion maritimae p.*

 Heaths rich in gorse (*Ulex*) of the Atlantic margins.

- **31.24 - Ibero-Atlantic Erica-Ulex-Cistus heaths.** *Daboecenion cantabricae p.*; *Ericenion umbellatae p.*, *Ericenion aragonensis*; *Ulicion maritimae p.*; *Genistion micrantho-anglicae p.*

 Aquitanian heaths with rock-roses. Iberian heaths with numerous species of heathers (notably *Erica umbellata*, *E. aragonensis*) and brooms, rock-roses and often *Daboecia*. When the rock-roses and other Mediterranean shrubs become dominant they should be classified under sclerophyllous scrubs (32).

- **31.25 - Boreo-Atlantic Erica cinerea heaths.**

2) **Plants:**

3) **Corresponding categories**

4040

*Dry Atlantic coastal heaths with *Erica vagans*

PAL.CLASS.: 31.234

1) Coastal heaths of temperate areas with *Erica vagans* and *Ulex europaeus* on well-drained soil, other than prostrate maritime formations.

2) **Plants:** *Erica vagans, Ulex europaeus.*

3) **Corresponding categories**

United Kingdom classification: "H6 *Erica vagans-Ulex europaeus* heath". The presence of *Ulex europaeus* is not obligatory.

4050

Endemic macaronesian heaths

PAL.CLASS.: 31.3

1) *Ericaceous* formations (low and medium-tall stages). *Andryalo-Ericetalia: Fayio-Ericion arboreae,*
Telino-Adenocarpion foliolosae (Canaries); *Calluno-Ulicetalia: Daboecion azoricae, Ericetum azoricae, Daphno-Ericetum azoricae* (Azores).

2) **Plants:** *Adenocarpus foliolosus, Calluna vulgaris, Chamaecytisus proliferus ssp. proliferus, #Cistus chinamadensis, Cletura arborea, Daboecia azorica, Erica arborea, E. maderensis, E. platycodon, #E. scoparia ssp. azorica, Illex canariensis, Juniperus brevifolia, Laurus azorica, Luzula purpureosplendens, Lysimachia azorica, Myrica faya, Pteridium aquilinum, Teline canariensis, T. splendens, T. stenopetala, Thymus caespititius, Vaccinium cilindraceum.*

4) Macaronesian Laurel forests (45.6) and Canarian heath forests (49.9) are tall forest-like formations associated with this habitat type.

4060

Alpine and Boreal heaths

PAL.CLASS.: 31.4

1) Small, dwarf or prostrate shrub formations of the alpine and sub-alpine zones of the mountains of Eurasia dominated by ericaceous species, *Dryas octopetala*, dwarf junipers, brooms or greenweeds; *Dryas* heaths of the British Isles and Scandinvavia.

Sub-types:

Very low, single-stratum, carpets of trailing azalea, *Loiseleuria procumbens*, prostate *Vaccinium* ssp. or other prostate ericoid shrublets, accompanied by lichen, of high windswept, mostly snowfree, localities in the alpine belt of the high mountains of the Alpine system.

Rhododendron ssp.-dominated heaths of acid podsol in the Alps, the Pyrenees, the Dinarids, the Carpathians, the Balkan Range, the Pontic Range, the Caucasian and the Himalayan system, often with *Vaccinium* ssp., sometimes with dwarf pines.
Usually dense formations of prostrate junipers of the higher levels of southern Palaearctic mountains.

Dwarf heaths dominated by Empetrum hermaphroditum, Vaccinium uliginosum, with Arctostaphylos alpina, Vaccinium myrtillus, Vaccinium vitis-idaea and lycopodes (Hyperzia selago, Diphasiastrum alpinum), mosses (Barbilophozia lycopodioides, Hyloloium splendens, Pleurozium schreberi, Rhytidiolepia triquetrus) and lichens (Cladonia rangiferina, Cladonia rangiferina, Cladonia stellaris, Cladonia gracilis, Peltigera aphthosa) of the sub-alpine belt of the Alps, the Carpathians, the Pyrenees, the Central Massif, the Jura, the Northern Apennines, characteristic of relatively windswept, snow-free stations, in frost-exposure situations that are, however, less extreme than those prevailing where communities of 31.41 dominate. Unlike the formations of 31.41, those of 31.44 are clearly two-layered.

31.45 - Boreo-alpine heaths
Alpine heaths of the highlands and islands of Scotland, alpine heaths of boreal mountains, in particular of the mountains of Scandinavia, of the Urals, of the mountains of Siberia, alpine heaths of Far Eastern mountains at, or just south of, the limits of the boreal zone, with Juniperus nana, Loiseleuria procumbens, Empetrum hermaphroditum, Arctostaphylos uva-ursi, Arctostaphylos alpina and elements of Alpine flora.

31.46 - Bruckenthalia heaths.

Mats of Arctostaphylos uva-ursi or Arctostaphylos alpina of the alpine, sub-alpine and locally, montane, belts of the Alps, the Pyrenees, the northern and central Apennines, the Dinarides, the Carpathians, the Balkan Range, the Rhodopides (south to the Slavianka-Orvilos, the Menikion, the Pangeon, the Falakron and the Rhodopi), the Moeso-Macedonian mountains (including Athos), the Palagonides (south to the Greek Macedonian border ranges Tzena, Pinovon and Kajmakchalan) and Olympus, in the Thessalian mountains, mostly on calcareous substrates.

Forest substitution heaths, treeline fringe formations and alpine heaths or mats of calcareous soils in the Alps and the Dinarides, with Rhododendron hirsutum, Rhododendron intermedium, Rhododendron chamaecistus and Erica herbacea, often accompanied by Clematis alpina, Daphne striata, Daphne mezereum, Globularia cordifolia, Arctostaphylos uva-ursi. Rhododendron hirsutum and, mostly in the Austrian Alps, Erica herbacea are the most frequent dominants; other shrubs can locally play that role. Arctostaphylos spp.-dominated facies have, however, been included in 31.47.

31.49 - Mountain avens mats
Dwarf heaths formed by mats of the woody Dryas octopetala in high Palaearctic mountains, in boreal regions and in isolated Atlantic coastal outposts.

31.4A - High mountain dwarf bilberry heaths
Vaccinium-dominated dwarf heaths of the sub-alpine belt of southern mountains, in particular, of the northern and central Apennines, the Balkan Range, the Helenides, the Pontic Range and the Caucasus, with Vaccinium myrtillus, Vaccinium uliginosum s.l., Vaccinium vitis-idaea and, locally, Empetrum nigrum. They are richer in grassland species than the communities of 31.44 and often take the appearance of alpine grassland with dwarf shrubs. Vaccinium myrtillus also plays a much more dominant role, in lieu of Vaccinium uliginosum and Empetrum hermaphroditum.

31.4B - High mountain greenweed heaths
Low Genista spp. or Chamaecytisus spp. heaths of the sub-alpine, low alpine or montane belts of high southern nemoral mountains, in particular of the southern Alps, the Apennines, the Dinarides, the southern Carpathians, the Balkan Range, the Moeso-Macedonian mountains, the Pelagonides, the northern Pindus, the Rhodopides, the Thessalian mountains.

2) Plants: 31.41 - Loiseleuria procumbens, Vaccinium spp.; 31.42 - Rhododendron ferrugineum; 31.44 - Empetrum hermaphroditum, Vaccinium uliginosum; 31.45 - Juniperus nana, Loiseleuria procumbens, Empetrum hermaphroditum, Arctostaphylos uva-ursi, Arctostaphylos alpina; in Fennoscandia also Betula nana, Cassiope tetragona, Cornus suecica, Juniperus communis,
Phyllocladus caerulea, Vaccinium myrtillus and Cladonia alpestris; 31.47 - Arctostaphylos uva-ursi, Arctostaphylos alpina; 31.48 - Rhododendron hirsutum, Rhododendron intermedium, Rhodothamnus chamaecistus and Erica herbacea; 31.49 - Dryas octopetala; 31.4A - Vaccinium myrtillus, Vaccinium uliginosum s.l., Vaccinium vitis-idaea; 31.4B - Genista radiata, G. holopetala, G. hassertiana, Chamaecytisus eriocarpus, C. absinthioides.

3) Corresponding categories

4070 * Bushes with Pinus mugo and Rhododendron hirsutum
(Mugo-Rhododendretum hirsuti)
PAL.CLASS.: 31.5

1) Pinus mugo formations usually with Rhododendron spp of the dry eastern inner Alps, the northern and southeastern outer Alps, the southwestern Alps and the Swiss Jura, the eastern greater Hercynian ranges, the Carpathians, the Apennines, the Dinarides and the neighbouring Pelagonides, the Pirin, the Rila and the Balkan Range;

2) Plants: Pinus mugo, Rhododendron hirsutum, R. ferrugineum, R. myrtifolium (syn. R. kotschy), Rhodothamnus chamaecistus, Calamagrostis villosa, Homogyne alpina

3) Corresponding categories
German classification: "6905 Alpenrosengebüsch", "6904 Latschengebüsch".

4080 Sub-Arctic Salix spp. scrub

1) Subarctic and boreo-alpine willow formations of the Scottish Highlands, the mountains of Iceland and the mountains of Scandinavia (often along streams) and similar communities in the Alps, Pyrenees, Cantabrian Mountains, Carpathians, and associated massifs.
Subtypes:
31.6211 - Alpigenous small willow brush
Subalpine, alpine and occasionally montane brushes and low scrubs of the Alps, the Apennines, the Jura and the western great Hercynian ranges, dominated by small shrubby (generally 0.5-2 metre tall) Salix species.
31.6214 - Pyreneo-Cantabric willow brush
Subalpine, alpine and occasionally montane Salix dominated brushes and low scrubs of the Pyrenees and the Cordilleran Cantabraca.

31.6215 - Hercynio-Carpathian willow brush
Subalpine, alpine and occasionally montane Salix dominated brushes and low scrubs of the Carpathians and the eastern Hercynian ranges of the Sudeten (Salicetum lapponum, Salici silesiaceae-Betuletum carpicae [p.], Piceo-Salicetum silesiaceae [i.a.]).

31.622 - Boreo-Alpine willow brush
Subarctic willow formations of the Highlands of Scotland, of the mountains of Iceland and of the boreal mountains of Scandinavia.

3) Corresponding categories
United Kingdom classification: "W20 Salix lapponum-Luzula sylvatica scrub".
Nordic classification: "127 Videvegetation".

4090 Endemic oro-Mediterranean heaths with gorse
PAL.CLASS.: 31.7

1) Primary cushion heaths of the high, dry mountains of the Mediterranean and Irano-Turanian regions, with low, cushion-forming, often spiny shrubs, such as Acantholimon, Astragalus, Erinacea, Vella, Bupleurum, Ptilotrichum, Genista, Echinopsartum, Anthyllis and various composites and labiates; secondary, zoogenic cushion heaths of the same regions, either downslope extensions of the high-altitude formations, and dominated by the same species, or specifically montane or steppic, often Genista-dominated in the Mediterranean region. Excluded are cushion-heaths of thermo-Mediterranean lowlands (33) and of deserts and semideserts (7).

Sub-types:
Echinopsartum horridum formations of dry slopes of the supra-Mediterranean zone of the southern Pyrenees; accompanying the dense, spiny cushions are Juniperus hemisphaerica, Buxus sempervirens, Ononis fruticosa, Arctostaphylos uva-ursi ssp. crassifolia and Pinus sylvestris.

Formations of the Cordilleran Central and adjacent areas dominated by diverse forms of Echinopsartum.

Highly developed hedgehog formations of the Sierra Nevada with Erinacea anthyllis, Vella spinosa, Astragalus sempervirens ssp. nevadensis, A. granatensis ssp. granatensis (A. boissieri), Ptilotrichum spinosum, Bupleurum spinosum, Genista baetica. Associated dwarf suffrutescent formations of high slopes and crests.

31.74 - Franco-Iberian hedgehog-heaths
Oro-Mediterranean and montane hedgehog-heaths of other Iberian ranges and of southern France.

31.75 - Cynro-Sardian hedgehog-heaths. Carici-Genistetalia (Carinetalia macrocephalae)
Expanses of small, compact bushes with Astragalus sirinicus ssp. genargenteus, Rosa seraphini, Anthyllis hermanniae, Thymus herba-barona, Cercastium boissieri, Genista salzmannii, G. corsica, Berberis aetnensis, Prunus prostrata and Daphne oleoides, of Sardinian and Corsican mountains.

31.76 - Mount Etna hedgehog-heaths. Astraqaletum siculi
Lava-colonising formations with cushions of *Astragalus granatensis* ssp. *siculus*, *Berberis aetnensis*, *Juniperus hemisphaerica*, *Genista aetnensis*, *Adenocarpus bivonae*, *Viola aethnensis*.

31.77 - Madonie and Apenine hedgehog-heaths
Hedgehog-heaths formed by *Astragalus* spp. or *Genista* spp., of the mountains of the southern Italian peninsula and Sicily, except Etna.

31.78 - Helleno-Balkanic sylvatic *Astragalus* hedgehog-heaths
Hedgehog-heaths occupying situations peripheral to the main range of the alti- and oro-Mediterranean hedgehog-heath communities of high Hellenic mountains (31.79 and 31.7A), mostly dominated by *Astragalus angustifolius*, characteristic, in particular, of zoogenous clearings within the forest belt of southern Greek mountains and of regions of irradiation of Mediterranean communities within the hills and mountains of the Moesian zone.

Hedgehog-heaths developed on relatively humus-rich rendziform soils at or above treeline, in the 1700-2200 m altitudinal range of high Greek mountains; hedgehog-heath facies of associated grasslands; similar, impoverished formations descending into the forest belts of the same mountains, with the exception of those of the Peloponnese, where they are replaced by distinctive formations, listed under 31.78.

Shrubby formations of the high mountains of the Peloponnese, of the southern mainland Greek mountains and of the Thessalian Olympus system, colonising the altitudinal range immediately above that occupied by the communities of 31.79, as well as stony slopes with shallow soil, loose scree and humus-deficient soils within the main 1700-2200 m range of these communities. Included are true spiny hedgehog-heaths, cushiony formations of dwarf sufrutescents and bush-dominated facies of stripped grasslands. *Astragalus angustifolius*, *Acantholimon androsaceum*, *Acantholimon androsaceum*, *Astragalus lacteus*, *Convolvulus cochlearis*, *Rindera graeca*, *Aster alpinus*, *Globularia stygia*, *Jungermannia stellata*, *Erysimum pseulium*, *Thymus teucrioides*, *Alyssum kionae*, *Paronychia kapela*, *Thymus hirsutus*, *Anthyllis aurea*, *Achillea ageratofilia*, *Sideritis scardica*, *Linum flavum*, *Thymus boissieri*, *Sesleria caerulans* are characteristic.

31.7B - Cretan hedgehog-heaths. *Saturejetea spinosae*
Hedgehog-heaths of high mountains of Crete, in the 1500-2500 m altitudinal range, with *Astragalus creticus* ssp. *creticus*, *A. angustifolius*, *Acantholimon androsaceum*, *Astragalus lacteus*, *Convolvulus cochlearis*, *Prunus prostrata*, *Euphorbia acanthothamnos*, *Verbascum spinosum*, *Sideritis syriaca*, *Satureja spinosa*, *Asperula idaea*, *Rhamnus prunifolius*, *Pimpinella tragium*, *Acinos alpinus*.

31.7C - Aegean summitial hedgehog-heaths
Isolated, endemic-rich, mostly summitial hedgehog-heaths of calcareous mountains of Aegean islands and Mount Athos.

31.7D - Southern Hellenic *Genista acanthoclada* hedgehog-heaths
Formations dominated by hemispherical shrubs of *Genista acanthoclada* of the middle levels (about 800 - 1200 m) of mountains and plateaux of the Peloponnese.

31.7E - *Astragalus sempervirens* hedgehog-heaths
Astragalus sempervirens ssp. *senvirens*, ssp. *muticus*, ssp. *cephalonicus* formations of the southern Alps, the eastern Pyrenees, Iberia, the Apenines and Greece, transitional between the alpine and sub-alpine heaths of 31.4 and the true Mediterranean hedgehog-heaths of 31.7.

31.7F - Canarian cushion-heaths. *Spartocytision rubigeni*
Open formations dominated by broom-like plants of the montane zone (above 1900 m) of the Canary Islands, with many endemic species.

40A0 * Subcontinental peri-Pannonic scrub

PAL.CLASS.: 31.8B12p, 31.8B13, 31.8B14, 31.8B3p

1) Low deciduous scrub with continental and sub mediterranean affinities of the Pannonic basin and neighbouring regions including the eastern Alpine periphery, the southern periphery of the North-western Carpathians, the Transylvanian plateau and the adjacent foothills and valleys of the Eastern and Southern Carpathians and the Apuseni mountains, the southern periphery of the Pannonic basin, the Moravian plateau and to the hills and valleys of the northern Balkan peninsula. Occurs on both calcareous and siliceous substrates forming mosaic-like vegetation with steppe grassland (6210) and forest-steppe elements or plants of the rupicolous Pannonic grasslands (6190) often along the fringes of woodlands.

Includes the following syntaxa:
- Prunetum fruticosae Dziubaltovski 1926 (syn.: Crataego-Prunetum fruticosae de Sóo 1951)
- Prunetum tenellae Soó 1947 (syn.: Amygdaletum nanae Soó 1951).
- Waldsteino-Spiraetum mediae Zólyomi 1936
- Helleboro odori-Spiraetum mediae Borhidi et Morschhauser 1999
- Syringo-Carpinion orientalis Jakucs 1959
- Calamagrosteto – Spireetum ulmifoliae Resmeriţă, Csürös 1966
- Spiretum crenatae Morariu et Ularu 1981
- Syringo – Genistetum radiatae Maloş 1972
- Asplenio – Syringetum vulgaris Jakucs et Vida 1959
- Cariceto (humilis – Sorbetum dacicae) Gergely 1962
- Corno – Fraxinetum orni Pop et Hodișan 1964
- Alno incanae-Syringetum josikaeae (Borza 1965) Raţiu et al. 1984

2) Plants:

3) Corresponding categories
Hungarian classification: continental deciduous steppe thickets (identification code: M6), continental deciduous rock thickets (identification code: M7), white-oak shrub woodlands (identification code: M1)

40B0 Rhodope Potentilla fruticosa thickets

PAL.CLASS.: 31.636

1) Closed formations dominated by *Potentilla fruticosa* at the 1550 metre level in the *Picea abies* and *Pinus sylvestris* belt of the west Rhodope mountains.

2) **Plants:** *Potentilla fruticosa, Bellardiochloa violaceae, Galium boreale, G. verum, Geum rhodopeum, Nardus stricta, Veronica rhodopaea, Viola rhodopeia, Bryophytes: Abietinella abietina*

40C0 *Ponto-Sarmatic deciduous thickets*

PAL.CLASS.: 31.8B7

1) Deciduous thickets of the wooded steppe zone of the Pontic and Sarmatic regions and of adjacent areas within and around the zone of occurrence of easternmost white cinquefoil oak woods (41.7A14), of tartar maple steppe oak woods (41.7A22) and of sub-Euxinian steppe woods (41.7A3) which form part of 91I0* Euro-Siberian steppic woods with *Quercus* spp.. The habitat includes several plant communities with species endemic to Dobrogea, such as the associations *Asphodelino luteae-Paliuretum* and *Rhamno catharticae-Jasminietum fruticantis*.

2) **Plants:** *Prunus spinosa, Crataegus monogyna, Caragana frutex, Spiraea crenifolia (Spiraea crenata), Prunus tenella (Amygdalus nana), Jasminum fruticans, Paliurus spin-a-christi, Rhamnus catarhica, Asparagus verticillatus, Asphodeline lutea, Bromus inermis, Dianthus nardiformis, Kochia prostrata, Medicago minima, Genista sessilifolia, Moehringia grisebachii, #Moehringia jankae, Orlaya grandiflora, Ornithogalum amphibolum, Paeonia tenuifolia, Salvia ringens, Thymus zygiodes, Veronica jacquinii.

SCLEROPHYLLOUS SCRUB (MATÓRRAL)

Sub-Mediterranean and temperate scrub

5110 Stable xerothermophilous formations with *Buxus sempervirens* on rock slopes (*Berberidion p.p.*)

PAL.CLASS.: 31.82

1) Stable xerothermophilous and calcicolous scrubs dominated by *Buxus sempervirens*, of hill and montane levels. These formations correspond to xerothermophilous *Buxus* thickets with their fringe associations of the *Geranion sanguinei* alliance on calcareous or siliceous substratum. They also constitute the natural woodland edge of calcareous dry forests rich with *Buxus*.

In the euro-siberian region, the more open formations are rich in submediterranean plant species.

Syntaxa: *Berberidion p.p.*, *Amelanchiero-Buxion*

2) **Plants:** *Buxus sempervirens, Prunus spinosa, Prunus mahaleb, Cornus mas, Crataegus spp., Berberis vulgaris, Ligustrum vulgare, Viburnum lantana, Amelanchier ovalis, Geranium sanguineum, Dictamnus albus.*

3) **Corresponding categories**

 German classification: "410103 Gebüsch trocken-warmer Standorte (Berberitzen-, Felsenmispel-, Felsenbirnen-, Sanddorngebüsche etc) (mit *Buxus sempervirens*, P036b).

4) Succession phase of calcareous grasslands toward mixed deciduous forests, for example with *Quercus pubescens* or continental pine forests with *Pinus sylvestris* (the word "stable" concerns those formations which are practically at climax stage, but on very superficial soils where natural succession towards forest can not take place).

 These communities are associated with calcareous grasslands, mixed oak or *Quercus pubescens* groves, beech groves rich in orchid species or with *Pinus nigra* and *Pinus leucodermis* (e.g. in Greece).

5120 Mountain *Cytisus purgans* formations

PAL.CLASS.: 31.842

1) *Cytisus purgans*-dominated formations of higher levels (upper montane, subalpine, oro-Mediterranean) of south-western European mountains, on superficial soils, often associated with dwarf juniper scrubs (31.43) or hedgehog-heaths (31.7), and physiognomically reminiscent of the latter. *Pino-Cytision purgantis p.*, *Genistion polygaliphyllae p.*

2) **Plants:** *Cytisus (Genista) purgans.*
5130

Juniperus communis formations on heaths or calcareous grasslands

PAL.CLASS.: 31.88

1) Formations with *Juniperus communis* of plain to montane levels. They mainly correspond to phytodynamic succession of the following types of vegetation:
 a) generally, mesophilous or xerophilous calcareous and nutrient poor grasslands, grazed or let lie fallow, of the Festuco-Brometea and Elyno-Sesleretea.
 b) more rarely, heathlands of the Calluno vulgaris-Ulicetea minoris (31.2).

2) Plants: *Juniperus communis*, *Crataegus* spp., *Rosa* spp., *Prunus spinosa*.
 For a) typical species of the Festuco-Brometea and Elyno-Sesleretea.
 For b) *Calluna vulgaris*, *Vaccinium myrtillus*, *Empetrum nigrum*, *Erica tetralix*, *Deschampsia flexuosa*, *Nardus stricta*.

3) Corresponding categories
 United Kingdom classification: "W19 - Juniperus communis ssp. communis-Oxalis acetosella woodland" and juniper rich facies of "W21 - Crataegus monogyna-Hedera helix scrub".
 German classification: "340201 submediterrane Halbtrockenrasen auf karbonatischem Boden (mit Wacholdergebüschen, P036a)", "340203 subkontinentale Halbtrockenrasen auf karbonatischem Boden (mit Wacholdergebüschen, P036a)", "4003 Heiden auf sandigen Böden (Calluna-Heiden) (mit Wacholdergebüschen, P036a)".
 Nordic classification: "5115e Juniperus communis-Calluna vulgaris variant".

5140

* Cistus palhinhae formations on maritime wet heaths

PAL.CLASS.: 32.2B

1) Low scrub and garrigue formations of the dolomitic tableland, karsts, sands and terra-rosas, rich in endemics (*Ulicetum erinacei*, *Genisto triacanthi-Cistetum palhinhae*).

Mediterranean arborescent matorral

5210 **Arborescent matorral with Juniperus spp.**

PAL.CLASS.: 32.131 to 32.136

1) Mediterranean and sub-Mediterranean evergreen sclerophyllous scrub organized around arborescent junipers. Mixed dominance can be indicated by combination of codes.

- **Sub-types**
 - 32.131 - *Juniperus oxycedrus* arborescent matorral
 - Arborescent matorral dominated by *Juniperus oxycedrus* s.l.
 - 32.132 - *Juniperus phoenicea* arborescent matorral
 - Arborescent matorral dominated by *Juniperus phoenicea* s.l.
 - 32.133 - *Juniperus excelsa* and *J. foetidissima* arborescent matorrals
 - Arborescent matorrals of Greece, Anatolia and the Near East, dominated by *Juniperus excelsa* or *J. foetidissima*.
 - 32.134 - *Juniperus communis* arborescent matorral
 - Mediterranean formations dominated by *Juniperus communis*.
 - 32.135 - *Juniperus drupacea* arborescent matorral
 - Formations derived from 42.A5 \(^{16}\), limited to the Peloponnese and Asia Minor.
 - 32.136 - *Juniperus thurifera* arborescent matorral
 - Formations derived from 42.A2 \(^{17}\).

2) **Plants:** *Juniperus oxycedrus, J. phoenicea, J. foetidissima, J. excelsa, J. communis, J. drupacea, J. thurifera.*

5220 **Arborescent matorral with Ziziphus**

PAL.CLASS.: 32.17

1) Pre-desert deciduous scrub of *Periploca laevigata, Lycium intricatum, Asparagus stipularis, A. albus, Withania frutescens* with tall *Ziziphus lotus*, confined to the arid Iberian South-west under a xerophytic thermo-Mediterranean bio-climate; corresponds to the mature phase or climax of climatophile and edapho-xero-psammophile vegetation series (*Periplocion angustifoliae: Ziziphetum loti, Zizipho-Maytenetum europaei, Mayteno-Periplocetum*).

2) **Plants:** *Asparagus albus, Calicotome intermedia, Chamaerops humilis, Maytenus senegalensis ssp. europaeus, Periploca laevigata ssp. angustifolia, Phlomis purpurea ssp. almeriensis, Rhamnus oleoides ssp. angustifolia, Withania frutescens, Ziziphus lotus.*

\(^{16}\) 42.A5 - Syrian juniper woods: *Juniperus drupacea* woods of the northern slopes of Mount Parnon and of the Karlik mountain in Thrace, Greece. Part of the formation takes the appearance of an arborescent matorral, listed under 32.135.

\(^{17}\) 42.A2 - Spanish juniper woods (*Juniperion thuriferae*): Forest formations dominated by *Juniperus thuriferae* of Spain, southern France and Corsica and North Africa. Many communities may be better described as arborescent matorrals, and listed under 32.136; geographical divisions can nevertheless be retained by appending the suffixes of 42.A2 to 32.136.

5230

* Arborescent matorral with *Laurus nobilis*

PAL.CLASS.: 32.18

1) Humid arborescent matorral with tall laurel (*Laurus nobilis*).

2) **Plants:** *Arbutus unedo, Ceratonia siliqua, Fraxinus ornus, Laurus nobilis, Olea europaea var. sylvestris, Phillyrea latifolia, Quercus ilex, Rubia peregrina ssp. longifolia, Smilax aspera var. altissima, Viburnum tinus*.

3) **Corresponding categories**

The syntaxa of the Spanish types are: *Quercetea ilicis, Querco-Oleion sylvestris: Viburno tini-Fraxinetum orni lauretosum nobilis* (southern mountains of Valencia); *Quercion ilicis: Lauro-Quercetum ilicis facies of Laurus nobilis* (from Asturias to the Basque Country).

Thermo-Mediterranean and pre-steppe brush

5310

Laurus nobilis thickets

PAL.CLASS.: 32.216

1) Lower facies of *Laurus nobilis* thickets described under 5230 in Annex I, generally of humid or cool stations.

2) **Plants:** *Laurus nobilis*.

5320

Low formations of *Euphorbia* close to cliffs

PAL.CLASS.: 32.217

1) Low formations of *Helichrysum* (*H. italicum ssp. microphyllum, H. italicum ssp. italicum*) with spurges (*Euphorbia pithyusa*, i.a.), *Pistacia lentiscus, Camphorosma monspeliaca, Artemisia densiflora* or *Thymelaea passerina, T. hirsuta, T. tartonaira* in the immediate vicinity of sea cliffs, forming the transition between cliff vegetation or clifftop phryganas and thermo-Mediterranean scrub.

2) **Plants:** *Helichrysum italicum ssp. microphyllum, H. italicum ssp. italicum, Euphorbia pithyusa, Pistacia lentiscus, Camphorosma monspeliaca, Artemisia densiflora, Thymelaea passerina, T. hirsuta, T. tartonaira*.

5330 Thermo-Mediterranean and pre-desert scrub

PAL.CLASS.: 32.21G1, 32.22 to 32.26, 32.441p

1) Scrub formations characteristic of the thermo-Mediterranean zone. Included here are those formations, for the most part indifferent to the siliceous or calcareous nature of the substrate, that reach their greatest extension or optimal development in the thermo-Mediterranean zone. Also included are the numerous, strongly characterised, thermophile formations endemic to the south of the Iberian peninsula, mostly thermo-Mediterranean but sometimes meso-Mediterranean; in their great local diversity they are a western counterpart of, and sometimes approach in appearance, the mostly eastern Mediterranean phryganas, which, however, on account of their strong structural singularity, are listed separately under 33.

Sub-types:

32.21G - *Genista fassellata* brush

Brushes dominated by the tall, spiny *Genista fassellata* of very restricted distribution in the eastern Mediterranean basin.

31.8B5p - Xerophilous *Crataegus azarolus* var. *aronia* scrub.

Low to medium height scrub of the semi-arid zone of Cyprus characterised by *Crataegus azarolus* var. *aronia* with an abundance of herbs and grasses and belonging to the *Genisto-Ceratonietum*. It develops at low to medium altitudes (300-500 m) on calcareous substrates.

32.22 - Tree-spurge formations

Stands of *Euphorbia dendroides*, remarkable tertiary relict of Macaronesian origin; they occur as a facies of the thermo-Mediterranean brushes of the Balearics, Corsica, Sardinia, Sicily, Isles Eolie, Egadi, Pelagi, Pantelleria, Crete, and, very locally, of those of the coasts of northern Catalonia, south-eastern France, peninsular Italy and its islands, central Greece, notably on slopes facing the gulf of Corinth, the Peloponnese, the Aegean archipelagos, and enclaves of the Mediterranean periphery of Anatolia and the Levant. Particularly extensive and robust stands occur in Sicily, Sardinia and Crete where they may extend to relatively high altitudes. Very local formations in Mediterranean North Africa occupy the steep rocky slopes of some coastal capes and isolated inland sites (Ichkeul).

32.23 - Diss-dominated garrigues

Garrigues invaded and dominated by the high tussocks of *Ampelodesmos mauritanica*; typically thermo-Mediterranean, they also occur extensively in the meso-Mediterranean zone. They are most prevalent on the Tyrrhenian coast of central and southern Italy, in Sicily, in the Mediterranean zone and the less arid parts of the Saharo-Mediterranean transition zone of North Africa.

32.24 - Palmetto brush

Chamaerops humilis-dominated formations; other thermo-Mediterranean brushes or garrigues rich in the physiognomically important palmetto can be identified by a combination of this code and that of the other appropriate subdivision of 32.2. Palmetto brushes are best represented in the coastal areas of south-western, southern and eastern Iberia, the Balearics, Sicily and its satellite islands and Mediterranean North Africa, with more sporadic occurrences in the Guadalquivir basin, Sardinia, and the Tyrrhenian coasts and islands of peninsular Italy.

32.25 - Mediterranean pre-desert scrub. *Periploci* *anguistifoliae*, *Anthyllidetalia terniflorae*.

Shrub formations constituting, with the halo-nitrophilous scrubs (15.724) and the localised gypsum scrubs (15.93), much of the natural and semi-natural vegetation of the arid zone of south-eastern Spain (Almeria, Murcia, Alicante), a highly distinctive region of unique climatological, biological and landscape character within Europe, extremely rich in African and endemic species. Several of the most remarkable formations remain in only a few undisturbed localities and are gravely at risk. Similar formations occur in the upper arid (Mediterranean arid) zone of North Africa. Outposts of these communities also exist in Sicily, the Egadi islands, the Pelagie islands, Malta and Pantelleria.

32.26 - Thermo-Mediterranean broom fields (retamares)

18 Communities dominated by hummocks of very tall stands of Lotus tree *Zyziphius lotus*, are included in the Annex I priority habitat 'Matorral with *Zyziphius*' (32.17).
West Mediterranean formations dominated by retamas (*Lygos* spp.) or by large, non-spiny thermo-Mediterranean brooms of genera *Cytisus* and *Genista*, limited to the Iberian peninsula, the Balearics, Mediterranean North Africa, Sicily and its associated islands, the Cilento coast of Campania.

32.441p - Spiny spurge garrigues

Euphorbia melitensis garrigues of Malta

2) **Plants**:
- 31.21G - *G. fasselata*
- 31.8B5p - *Crataegus azarolus* var. *aronia*
- 32.22 - *Euphorbia dendroides*
- 32.23 - *Amelodesmos mauritanica*
- 32.24 - *Chamaerops humilis*
- 32.441 – *Euphorbia melitensis*.

Phrygana

5410 West Mediterranean clifftop phryganas (*Astragalo-Plantaginetum subulatae*)

PAL.CLASS.: 33.1

1) Rare, extremely local and isolated, cushion-forming thermo-Mediterranean sclerophyllous associations of clifftops and adjacent areas dispersed along the coasts, characterised by the presence of *Astragalus massiliensis* or *Anthyllis hermanniae*, variously accompanied by *Thymelaea hirsuta*, *Helichrysum italicum*, *Plantago subulatum*, *Armeria ruscicononensis*.

2) **Plants**:
- *Anthyllis hermanniae*
- *Thymelaea hirsuta*
- *Helichrysum italicum*
- *Plantago subulatum*
- *Armeria ruscicononensis*.

5420 *Sarcopoterium spinosum* phryganas

PAL.CLASS.: 33.3

1) Low, thorny formations of hemispherical shrubs of the coastal thermo-Mediterranean zone of Aegean islands, of mainland Greece and the Ionian islands, of coastal Anatolia, much more widespread and diverse than the western Mediterranean formations.

2) **Plants**:

19 Cushion-forming thermo-Mediterranean sclerophyllous formations, often thorny and summer deciduous. They are best developed in the eastern Mediterranean, where they may occupy considerable surfaces in coastal areas and occasionally inland. They also include a few rare, relict associations of the western Mediterranean, mostly characteristic of the edge of seashores and of maritime cliffs, where they constitute an often narrow belt between the cliff communities and thermo-Mediterranean brushes, incorporating, in addition to characteristic, often endemic or very rare, hemispherical cushion-forming species, an admixture of species belonging to these two vegetation complexes.
Ononis spinosa, Helichrysum italicum ssp. microphyllum, Helichrysum italicum ssp. italicum, Phagnation graecum.

5430 Endemic phryganas of the Euphorbio-Verbascion

PAL.CLASS.: 33.4 to 33.A

1) Cushion-forming thermo-Mediterranean sclerophyllous formations, often thorny and summer deciduous.
 Sub-types:
 33.4 - Mid-elevation phryganas of Crete
 Varied formations of supra- and oro-Mediterranean levels of Crete resulting from the broad contact between phryganas and hedgehog-heaths (32.7), with Euphorbia acanthothamnos, Verbascum spinosum, Berberis cretica, Phlomis cretica, Satureja biroi, Sideritis syriaca, Hypericum empetrifolia, Origanum microphyllum, Micromeria juliana, Helichrysum italicum ssp. microphyllum, Genista acanthoclada.
 33.5 - Hypericum phryganas
 Extremely rare, local colonies of hemispherical shrubs of Hypericum aegyptiacum forming open phryganas on calcareous rocks by the sea in the Ionian islands, western Crete, Sardinia and Lampedusa.
 33.6 - Italian Sarcopoterium phryganas
 Very local, impoverished Sarcopoterium spinosum formations of Capo St. Elia (southern Sardinian coast) and of the Gulf of Taranto (Puglia, Calabria).
 33.7 - Sardinian Genista acanthoclada phrygana
 Very local Genista acanthoclada ssp. sardoa-dominated communities of north-western Sardinia.
 33.8 - Balearic clifftop phryganas
 Formations of the coasts of Mallorca and Minorca dominated by the cushion-forming Balearic endemics Launaea cervicornis, Astragalus balearicus, *Centaurea balearica, Anthyllis fulgurans, A. hermanniae ssp. hystrix, Teucrium subspinosum.
 33.9 - Cynno-Sardian Genista phryganas
 Thermo-Mediterranean formations of headlands and peninsulas of Corsica and Sardinia dominated by cushion-forming spiny Genista corsica or G. morisii. These endemic species participate in the constitution of hedgehog-heaths (31.75) as well as in that of the coastal formations listed here, which assume an evident phrygana appearance; they may also enter in the composition of mid-elevation formations of less distinctive appearance which can be listed under 32.482.
 33.A - Pantelleria phrygana
 Coastal formation of hemispherical shrubs with the Pantelleria endemics Helichrysum saxatile ssp. errerae and Matthiola pulchella, vicariant of the west Mediterranean, Balearic and Sardinian clifftop phryganas.

2) Plants:
 33.4 - Euphorbia acanthothamnos, Verbascum spinosum, Berberis cretica, Phlomis cretica, Satureja biroi, Sideritis syriaca, Hypericum empetrifolia, Origanum microphyllum, Micromeria juliana, Helichrysum italicum ssp. microphyllum, Genista acanthoclada; 33.5 - Hypericum aegyptiacum; 33.6 - Sarcopoterium spinosum; 33.7 - Genista acanthoclada ssp. sardoa; 33.8 - Launaea cervicornis, Astragalus balearicus, *Centaurea balearica, Anthyllis fulgurans, A. hermanniae ssp. hystrix, Teucrium subspinosum; 33.9 - Genista corsica, G. morisii; 33.A - Helichrysum saxatile ssp. errerae, Matthiola pulchella.
NATURAL AND SEMI-NATURAL GRASSLAND FORMATIONS

Natural grasslands

6110 * Rupicolous calcareous or basophilic grasslands of the Alysso-Sedion albi

PAL.CLASS.: 34.11

1) Open xerothermophile pioneer communities on superficial calcareous or base-rich soils (basic volcanic substrates), dominated by annuals and succulents of the Alysso alyssoidis-Sedion albi Oberdorfer & Müller in Müller 61. Similar communities may develop on artificial substrates; these should not be taken into account.

3) Corresponding categories
 German classification: "320101 natürlicher Karbonatfels (Kalk, Dolomit) (lückige Vegetation, P002)".
 Nordic classification: Asplenium ruta-muraria-Asplenium trichomanes-Homalothecium sericeum-variant of "Sedum album-Tortella spp.-typ".

4) In some regions of Belgium and Germany this habitat is very closely linked with Xerobromion and Mesobromion associations.

6120 * Xeric sand calcareous grasslands

PAL.CLASS.: 34.12

1) Dry, frequently open grasslands on more or less calciferous sand with a subcontinental centre of distribution (Koelerion glaucae, Sileno conicae-Cerastion semidecandri, Sedo-Cerastion p.).

3) Corresponding categories
 German classification: "340403 ausdauernder Sandtrockenrasen mit geschlossener Narbe".
 Nordic classification: "5141 Koeleria glauca-typ".

4) This habitat occurs in association with non coastal dune complexes.

6130 Calaminarian grasslands of the Violetalia calaminariae

PAL.CLASS.: 34.2, 36.44
1) Generally open natural or semi-natural grasslands 1) on natural rock outcrops, rich in heavy metals (e.g. zinc, lead), 2) river gravels and shingles, 3) on old terrils or spoil heaps around mines. These open grasslands are characterised by a highly specialised flora, with subspecies and ecotypes adapted to heavy metals. The threatened endemic taxa are generally absent from the pioneer vegetation of younger terrils. This pioneer vegetation is not considered to be a priority.

2) **Plants:** *Viola calaminaria* and metallophyte races of *Thlaspi caerulescens*, *Armeria maritima*, *Minuartia verna*, *Silene vulgaris*, *Festuca ophioliticola*, *Cochleria alpina* sensu lato.

3) **Corresponding categories**
 German classification: "3405a natürliche und halbnatürliche Schwermetallrasen".
 United Kingdom classification: "OV37 *Festuca ovina-Minuartia verna* community".

4) Seminatural sites are to be taken into account mainly if natural sites are very rare or absent from a region or, if these sites shelter characteristic or outstanding plant species.

6140 Siliceous Pyrenean *Festuca eskia* grasslands

PAL.CLASS.: 36.314

1) Subalpine and lower alpine closed mesophile *Festuca eskia* grasslands of north-facing slopes (ubacs) and depressions in the Pyrenees with *Arnica montana*, *Ranunculus pyreanaeus*, *Selinum pyrenaicum*, *Trifolium alpinum*, *Campanula barbata*, *Gentiana punctata*, *Leucorchis albida*, *Phyteuma betonicifolium*.

2) **Plants:** *Festuca eskia*.

6150 Siliceous alpine and boreal grasslands

PAL.CLASS.: 36.11, 36.32, 36.34

1) Boreo-alpine formations of the higher summits of mountains in the Alps and Scandinavia with outliers elsewhere such as the Carpathians, with *Juncus trifidus*, *Carex bigelowii*, mosses and lichens. Also included are associated snowbed communities.

2) **Plants:** *Juncus trifidus*, *Carex bigelowii*, *Cassiope tetragona*.

3) **Corresponding categories**
 United Kingdom classification: "U7 *Nardus stricta-Carex bigelowii* grass heath", "U8 *Carex bigelowii-Polytrichum alpinum* sedge heath", "U9 *Juncus trifidus-Racomitrium lanuginosum* rush-heath", "U10 *Carex bigelowii-Racomitrium lanuginosum* moss heath", "U11 *Polytrichum sexangulare-Kiaeria starkei* snow-bed", "U12 *Salix herbacea-Racomitrium lanuginosum* snow-bed" and "U14 *Alchemilla alpina-Sibbaldia procumbens* dwarf-herb community".

6160 Oro-Iberian *Festuca indigesta* grasslands

PAL.CLASS.: 36.361

1) Thermophile, open, stripped and garland fescue grasslands of siliceous upper slopes and summits of the high Mediterranean mountains, locally extending into the Euro-Siberian domain at the subalpine level (*Festucetalia indigestae*).

2) **Plants: Festuca indigesta.**

6170 Alpine and subalpine calcareous grasslands

PAL.CLASS.: 36.12, 36.41 to 36.43, 36.37, 36.38

1) Alpine and subalpine grasslands of base-rich soils, with *Dryas octopetala, Gentiana nivalis, Gentiana campestris, Alchemilla hoppeana, Alchemilla conjuncta, Alchemilla flabellata, Anthyllis vulneraria, Astragalus alpinus, Aster alpinus, Draba aizoides, Globularia nudicaulis, Helianthemum nummularium ssp. grandiflorum, Helianthemum oelandicum ssp. alpestre, Pulsatilla alpina ssp. alpina, Phyteuma orbiculare, Astrantia major, Polygala alpestris* (36.41 to 36.43) of mountain ranges such as the Alps, Pyrenees, Carpathians and Scandinavia. Also included are the grasslands of the subalpine (oro-Mediterranean) and alpine levels of the highest mountains of Corsica (36.37), and the Mesophile, closed, short turfs of the subalpine and alpine levels of the southern and central Apennines, developed locally above treeline, on calcareous substrates (36.38). Can also include associated snowpatch communities (e.g. *Arabidion coeruleae*).

Sub-types:

36.41 - Closed calciphile alpine grasslands

Mesophile, mostly closed, vigorous, often grazed or mowed, grasslands on deep soils of the subalpine and lower alpine levels of the Alps, the Pyrenees, the mountains of the Balkan peninsula, and, locally, of the Apennines and the Jura.

36.42 - Wind edge naked-rush swards

Meso-xerophile, relatively closed and unsculptured swards of *Kobresia myosuroides* (*Elyna myosuroides*) forming on deep, fine soils of protruding ridges and edges exposed to strong winds in the alpine and nival levels of the Alps, the Carpathians, the Pyrenees, the Cantabrian Mountains, Scandinavian mountains and, very locally, the Abruzzi and the mountains of the Balkan peninsula, with *Oxytropis jacquini* (*Oxytropis montana*), *Oxytropis pyrenaica*, *Oxytropis carinthiaca*, *Oxytropis foucaudii*, *Oxytropis halleri*, *Antennaria carpatica*, *Dryas octopetala*, *Draba carinthiaca*, *Draba siliquosa*, *Draba fladnizensis*, *Draba aizoides*, *Gentiana tenella*, *Erigeron uniflorus*, *Dianthus glacialis*, *Dianthus monspessulanus* ssp. sternbergii, *Potentilla nivea*, *Saussurea alpina*, *Geranium argenteum*, *Sesleria sphaerocephala*, *Carex atrata*, *Carex brevicollis*, *Carex foetida*, *Carex capillaris*, *Carex nigra*, *Carex curvula* ssp. *rosae* and *Carex rupestris*.

Scandinavian *Kobresia* grasslands with *Carex rupestris* are included.

36.43 - Calciphilous stepped and garland grasslands

Xero-thermophile, open, sculptured, stepped or garland grasslands of the Alps, the Carpathians, the Pyrenees, the mountains of the Balkan peninsula and the Mediterranean mountains, with very local outposts in the Jura.
36.44 - Alpine heavy metal communities: included in habitat 6130 'Calaminarian grasslands (Violetalia calaminariae)',
36.37 - Oro-Corsican grasslands
Grasslands of the subalpine (oro-Mediterranean) and alpine levels of the highest mountains of Corsica.
36.38 - Oro-Apennine closed grasslands
Mesophile, closed, short turfs of the subalpine and alpine levels of the southern and central Apennines, developed locally above treeline, on calcareous substrates.

3) Corresponding categories
United Kingdom classification: "CG12 Festuca ovina-Alchemilla alpina-Silene acaulis dwarf-herb heath", "CG13 Dryas octopetala-Carex flaca heath", "CG14 Dryas octopetala-Silene acaulis ledge community".
Nordic classification: "123 Lågörtvegetation på rikt/kalkrikt underlag".
Romanian classification: "R3401-Pajişti sud-est carpatice de Asperula capitata şi Sesleria rigida", "R3402-Pajişti sud-est carpatice de Helictotrichon decorum", "R3601-Pajişti sud-est carpatice de rogoz pitic (Kobresia myosuroides) şi Oxytropis carpathica", "R3605-Pajişti sud-est carpatice de păuş cu colţi (Festuca versicolor) şi Sesleria rigida ssp. haynaldiana", "R3606-Pajişti sud-est carpatice de păuş de stânci (Festuca saxatilis) ", "R3607-Pajişti sud-est carpatice de Festuca amethystina şi Dianthus tenuifolius", "R3611-Pajişti sud-est carpatice de coada iepurelui (Sesleria rigida ssp. haynaldiana) şi rogoz (Carex sempervirens) ", "R3612-Pajişti sud-est carpatice de rogoz (Carex sempervirens) şi coarnă mare (Sesleria bielzii) ", "R3613-Pajişti sud-est carpatice de Carduus kernerii, Festuca carpathica şi Triisetum fuscum", "R3614-Pajişti sud-est carpatice de Festuca xanthina"

6180 Macaronesian mesophile grasslands
PAL.CLASS.: 38.5
1) Secondary grasslands of the highest levels.
6190 Rupicolous pannonic grasslands (*Stipo-Festucetalia pallentis*)

PAL CLASS.: 34.35

1) Open, pioneer rock sward associations occurring on steep, dry xeric slopes in medium altitude mountains of the Pannonic basin and adjacent regions at 150-900 m a.s.l.. The base rock is limestone, dolomite or calcareous volcanic rock (basalt, andesite, gabbro) and the soils are shallow rendzinas.

Sub types:
34.351 - Calci-orophile pale fescue grasslands (*Diantho lumnitzeri-Seslerion albicantis, Seslerion rigidae*)

Central European calcicolous subcontinental rock-ledge grasslands of orogenous affinities, montane or submontane with a strong representation of species characteristic of higher-altitude communities, often occupying stations with a comparatively cool microclimate.

34.352 - Circum-Pannonic calcicline pale fescue grasslands (*Bromo pannonici-Festucion pallentis*)

Species-rich xerothermophile subcontinental rock-ledge grasslands of the western and southern periphery of the Carpathian arc, developed on rendzinas over limestones or dolomite on south-facing steep slopes with extreme conditions of insolation, temperature variation and evaporation.

34.353 - Acidocline pale fescue grasslands (*Asplenio septentrionalis-Festucion pallentis, Alysso saxatilis-Festucion pallentis*)

Central European subcontinental xerothermophile grasslands of siliceous collinear and montane rock ledges.

2) Plants:

Festuca pallens, Bromus pannonicus, Stipa eriocaulis, S. joannis, S. pulcherrima, Carex humilis, Chrysopogon gryllus, Iris pumila, Pulsatilla grandis, Alyssum montanum, Helianthemum nummularium agg., Globularia punctata, Anacamptis pyramidalis, Seseli leucospermum, Linum dolomiticum, Vincetoxicum pannonicum, Draba lasiocarpa, Dianthus regis-stephani, Biscutella laevigata agg., Polygala amara, Daphne cneorum, Paronychia cephalotes, Sesleria sadleriana, Festuca amethystina.

3) Corresponding categories

Hungarian classification: “Calcareaous open rock grasslands (identification code: G2)”, "Acidophilous open rock grasslands (identification code: G3)”, "Closed rock grasslands (identification code: H1)”.

4) Dolomitic grasslands are stable associations preserving many relict species, which may persist for several thousand years. They are in contact with karst shrub (*Cotino-Quercetum pubescentis*) and karstic beech woods (*Orno-Fagetum*). During primary succession the limestone and siliceous rock grasslands become closed and form transition to slope steppe vegetation (*Festucion rupeicolae*), then rock shrub vegetation (*Spiracio mediae*) and thermophile oak woods (*Corno-Quercetum*) and rock forests (*Tilio-Fraxinetum*).

Semi-natural dry grasslands and scrubland facies

6210 Semi-natural dry grasslands and scrubland facies on calcareous substrates (*Festuco-Brometalia*)

PAL.CLASS.: 34.31 to 34.34

1) Dry to semi-dry calcareous grasslands of the *Festuco-Brometea*. This habitat is formed on the one hand by steppic or subcontinental grasslands (*Festucetalia valesiacae*) and, on the other, by the grasslands of more oceanic and sub-Mediterranean regions (*Brometalia erecti*); in the latter case, a distinction is made between primary *Xerobromion* grasslands and secondary (semi-natural) *Mesobromion* grasslands with *Bromus erectus*; the latter are characterised by their rich orchid flora. Abandonment results in thermophile scrub with an intermediate stage of thermophile fringe vegetation (*Trifolio-Geranietea*). Important orchid sites should be interpreted as sites that are important on the basis of one or more of the following three criteria:

(a) the site hosts a rich suite of orchid species
(b) the site hosts an important population of at least one orchid species considered not very common on the national territory
(c) the site hosts one or several orchid species considered to be rare, very rare or exceptional on the national territory.

Animals: Papilio machaon, Iphiclides podalirius (Lepidoptera); Libelloides spp., Mantis religiosa (Neuroptera).

3) Corresponding categories

United Kingdom classification: "CG1 Festuca ovina-Carlina vulgaris grassland", "CG2 Festuca ovina-Avenula pratensis grassland", "CG3 Bromus erectus grassland", CG4 Brachypodium pinnatum grassland", "CG5 Bromus erectus-Brachypodium pinnatum grassland", "CG6 Avenula pubescens grassland", "CG7 Festuca ovina-Hieracium pilosella-Thymus praecox/pulegioides grassland", "CG8 Sesleria albicans-Scabiosa columbaria grassland", "CG9 Sesleria albicans-Galium sterilis grassland".

In France the following sub-types are found: 34.31 - Sub-contiental (Euro-Siberian and eastern) grasslands of the inner Alps stretching perhaps to Alsace (*Stipo capillatae-Festucetalia valesiacae* Gaultier 89 prov.); 34.32 - Sub-Atlantic xerocline calcicolous grasslands [*Mesobromenalia erecti* Royer 87 (IX 212: *Brometalia erecti* Br-Bl. 36)]; 34.33 - Sub-Atlantic xerophile calcicolous grasslands (*Xerobromenalia erecti* Royer 87); 34.34 - Central European calcareo-siliceous grasslands generally established on hyperxerothermophile sands, partly denuded (*Koelerio macranthae-Phleion phloeidis* Korneck 74 (*Koelerio macranthae-Phleenalia phloeidis* (Korneck 74) Royer 87).

German classification: "340101 submediterranean Trockenrasen auf karbonatischem Untergrund", "34020301 subkontinentaler Halbtrockenrasen auf karbonatischem Boden, gemäht", "34020102 submediterranean Halbtrockenrasen auf karbonatischem Boden, beweidet Mähweide", "34020103 submediterranean Halbtrockenrasen auf karbonatischem Boden, brachgefallen", "340301 subkontinentaler Trockenrasen auf karbonatischem Untergrund".
"34020101 submediterraner Halbtrockenrasen auf karbonatischem Boden, gemäht", "34020302 subkontinentaler Halbtrockenrasen auf karbonatischem Boden, beweidet Mähweide", "34020303 subkontinentaler Halbtrockenrasen auf karbonatischem Boden, brachgefallen", "3403 natürlicher Steppenrasen (kontinental, auf tiefgründigem Boden)".

Nordic classification: Avenula pratensis-Artemisia oelandica-variant of "5213 Avenula pratensis-Fragaria viridis-Filipendula vulgaris-typ"

4) Often in association with scrubland and thermophile forests and with dry pioneer Sedum meadows (Sedo-Scleranthea).

6220 * Pseudo-steppe with grasses and annuals of the Thero-Brachypodietea

PAL.CLASS.: 34.5

1) Meso- and thermo-Mediterranean xerophile, mostly open, short-grass annual grasslands rich in therophytes; therophyte communities of oligotrophic soils on base-rich, often calcareous substrates. Perennial communities - Thero-Brachypodietea, Thero-Brachypodietalia: Thero-Brachypodion. Poetea bulbosae: Astragalo-Poion bulbosae (basiphile), Trifolio-Periballion (silicilous). Annual communities - Tubarietia guttatae Br.-Bl. 1952 em. Rivas-Martinez 1978, Trachynietalia distachyae Rivas-Martinez 1978: Trachynion distachyae (calciphile), Sedo-Ctenopsion (gypsophile), Omphalodion commutatae (dolomitic and silico-basiphile). In France a distinction can be made between: (a) annual herbaceous vegetation of dry, initial, low-nitrogen soils ranging from neutro-basic to calcareous: Stipo capensis-Brachypodietea distachyae (Br-Bl. 47) Brullo 85; (b) vegetation of more or less closed grasslands on deep, nitrocline and xerocline soil: Brachypodietalia phoenicoidis (Br-Bl. 31) Molinier 34.

In Italy this habitat mainly exists in the South and on the islands (Thero-Brachypodietea, Poetea bulbosae, Lygeo-Stipetea).

2) Plants: Brachypodium distachyum, B. retusum.

6230 * Species-rich Nardus grasslands, on siliceous substrates in mountain areas (and submountain areas, in Continental Europe)

PAL.CLASS.: 35.1, 36.31

1) Closed, dry or mesophile, perennial Nardus grasslands occupying siliceous soils in Atlantic or sub-Atlantic or boreal lowland, hill and montane regions. Vegetation highly varied, but the variation is characterised by continuity. Nardetalia: 35.1-Violo-Nardion (Nardo-Galion saxatilis, Violion caninae); 36.31- Nardion.

Species-rich sites should be intrepreted as sites with are remarkable for a high number of species. In general, the habitats which have become irreversibly degraded through overgrazing should be excluded.

2) Plants: Antennaria dioica, Arnica montana, Campanula barbata, Carex ericetorum, C. pallescens, C. panicua, Festuca ovina, Galium saxatile, Gentiana pneumonanthe, Hypericum maculatum, Hypochoeris maculata, Lathyrus montanus, Leontodon helveticus, Leucorchis albida, Meum
3) **Corresponding categories**

The habitat sub-types belonging to the *Nardion* alliance shows a strong regional differentiation: Alps and Pyrenees - *Geo-montani-Nardetum*, Black Forest - *Leontodonto-Nardetum*, Harz - *Pulsatillo micranthae-Nardetum*, Bayerischer Wald - *Lycopodio-Nardetum*. In the United Kingdom, the habitat covers the most species-rich sites of the types "CG10 *Festuca ovina-Agrostis capillaris-Thymus praecox*" and "CG11 *Festuca ovina-Agrostis capillaris-Alchemilla alpina* grass heath".

German classification: "34060101 gemähter Borstgrasrasen der planaren bis submontanen Stufe", "34060102 beweideter Borstgrasrasen der planaren bis submontanen Stufe (incl. Mähweide)", "34060103 brachgefallener Borstgrasrasen der planaren bis submontanen Stufe", "34060201 gemähter Borstgrasrasen der montanen bis hochmontanen Stufe", "34060202 beweideter Borstgrasrasen der montanen bis hochmontanen Stufe (incl. Mähweide)", "34060203 brachgefallener Borstgrasrasen der montanen bis hochmontanen Stufe".

Nordic classification: "5133 *Nardus stricta*-typ" and "5233a *Carex nigra-Carex panicea-Nardus stricta*-variant".

1) Grassland communities rich in perennial grasses and herbs on loess deposits. Originally covering large areas, nowadays restricted to specific land forms like loess ridges formed by fluviatile erosion and accumulation.

2) **Plants:** *Artemisia pontica, Astragalus vesicarius, A. austriacus, A. onobrychis, Crambe tataria, Nonea pulla, Salvia nemorosa, Ornithogalum pannonicum, Agropyron pectinatum, Phlomis tuberosa, Bromus inermis, Festuca rupicola, Falcaria vulgaris, Peucedanum alsaticum, Elymus hispidus, Chamaecytisus supinus, Achillea pannonica.*

3) **Corresponding categories**
 Syntaxa for Austria: *Astragalo excapi-Crambetum tatarici.*

6260 *Pannonic sand steppes*

PAL.CLASS.: 34.A1, 34.A2

1) Formations dominated by medium or tall perennial tuft-forming grasses or suffrutescents, with lacunar ground cover, together with their associated therophyte communities developed on mobile or fixed sands (alluvial sands, subfossil dune systems) within the range of the Pannonic steppes (34.91), thus in the Pannonic basin and the areas dominated by its communities. Also includes similar communities in the West Pontic basin (34.A2).

2) **Plants:** *Festuca vaginata, Helychrysum arenarium, Dianthus serotinus, Gypsophila fastigiata, G. paniculata, Koeleria glauca, Alyssum montanum ssp. gmelinii, Bassia laniflora, Centaurea scabiosa ssp. sadleriana, C. jacea ssp. angustifolia, Erysimum diffusum, Stipa capillata, S. pulcherrima, Cynodon dactylon, Festuca pseudovina.*

 Animals: insects - *Gampsocleis glabra, Myrmeleotettix antennatus, *Callimorpha quadripunctaria, Cletis maculosa, Zygaena laeta, Z. punctum, Scythris kasyi.*

3) **Corresponding categories.**
 Syntaxa for Austria: *Festucetum vaginatae, Brometum tectorum, Equisetetum ramosissimi, Potentillo arenariae-Festucetum pseudovinae.*

6270 * Fennoscandian lowland species-rich dry to mesic grasslands

1) This habitat type occurs in the Fennoscandian lowlands varying from dry to mesic grasslands mainly on siliceous substrates. The vegetation is formed by long-term continuous grazing and/or mowing. No fertilization may occur. Species composition varies in different geographical areas, on different soils and moisture regimes and different management regimes. Includes habitats which are still traditionally used and also recently abandoned habitats with a species-rich grassland vegetation. The habitat often supports species-rich vascular plant communities. Several endangered fungi-species also occur.

3) Corresponding categories
Nordic classification: 5212 Festuca ovina-Lychnis viscaria-type, 5213 Avenula pratensis-Fragaria viridis-Filipendula vulgaris-type, 5222 Agrostis capillaris-Alchemilla spp.-Trifolium repens –type, 5223 Leucanthemum vulgare-type, 5224 Germanium sylvaticum-type.

6280 * Nordic alvar and precambrian calcareous flatrocks
PAL.CLASS.: 34.1151, 34.3171, 34.3173 (1997 version)

1) Nordic alvar and Precambrian calcareous flatrocks are very species-rich ecosystems, with an ecological character strongly influenced by winter climatic conditions. Where a thin soil layer exists, it is often frozen to ice and covered with snow. Plants and animals have special adaptations to these conditions. For example the invertebrates must have strategies for overwintering. Annual freezing and thawing give rise to movements at the soil surface creating small patches of bare soil occupied by annual plants, a number of which are rare. The flat rocks may be covered with a thin layer of soil, which is the product of weathering of the underlying rock. The flora and fauna is very rich in species and many of them are rare.

On Öland the Nordic alvar represents a subtype with dominating Helianthemum oelandicum and other endemic species. The ground is covered with a 5-30 cm deep crumbling soil. The inclination is near zero and the draining process is extremely slow. Freeze-thaw action creates soil polygons with a characteristic patterning of vegetation. In Nordic alvar there are also depressions, which sometimes are filled with water. In summertime those wetlands, on Öland and Gotland called “vätar”, will dry up completely or partially.

Nordic alvar is a habitat type of cambro-siluric or precambrian calcareous rocks.

2) Plants: Androsace septentrionalis, Asperula tinctoria, Gentianella amarella, Linum catharticum, Melica ciliata, Potentilla tabernaemontani, Saxifraga adscedens, S. tridactylites, Sedum acre, S. album, Hornungia petraea, Festuca ovina, Geranium columbinum, on Gotland e.g. Fumana procumbens, Inula ensifolia, I. salicina, Arenaria gothica, Tragopon dubius, Pulsatilla patens, Crepis tectorum spp. pumila, on Öland also Galium oelandicum, Allium schoenoprasum var. alarensese, Artemisia oelandica, Silene uniflora var. petraea. Lichens- Cetraria nivalis, Aspicilia calcarca, Fulgensia spp., Toninia caeruleogrigicans, Cladonia pocillum, C. symphycarpa, Bryophytes- Encalypta spp., Tortella tortuosa, Ditrichum flexicaule, Schistidium apocarpum.
3) Corresponding categories
Nordic vegetation types: 5151 Sedum album-Tortella spp. -type, 5152 Festuca ovina-Tortella spp. -type and 5213c Avenula pratensis-Artemisia oelandica -variant

62A0 Eastern sub-mediterranean dry grasslands (Scorzoneratalia villosae)
PALCLASS.: 34.75

1) Xeric grasslands of the sub-Mediterranean zones of Trieste, Istria and the Balkan peninsula, where they coexist with steppic grasslands of the Festucetalia valesiacae (6210), developing in areas of lesser continentality than the latter and incorporating a greater Mediterranean element. Includes the following communities; - Carici humilis-Centaureetum rupestris, Genisto holopetalae-Caricetum mucronatae, Chrysopogono-Centaureetum cristatae, Danthonio- Scorzoneretum villosae & Cleistogeno – Festucetum rupicolae.

62B0 * Serpentinophilous grasslands of Cyprus
PALCLASS.:

1) Perennial herb communities restricted to ultramafic areas of Cyprus such as the Troodos mountains and the Akamas peninsula. The vegetation consists of small patches of sparse plant cover on rocky outcrops and stony places with a specialised flora, including several endemic species. Occurs at 700 to 1950 m in the central Troodos range although the most representative communities occur above 1700m. There are also similar communities at lower altitudes (350 –450m) on Akamas (western Troodos). The substrates are ultramafic rocks such as serpentine, dunite, werhlite & hurzburgite.

2) Plants:
High altitude form Acinos troodi, Alyssum cypricum, Alyssum troodi, Anthemis plutonia, Corydalis rutifolia, Cynoglossum troodi, Dianthus strictus ssp troodi, Euphorbia cassia ssp. rigoi, Hypericum confertum ssp. stenobotrys, Lindbergella sintenissii, Onosma troodi , Ranunculus cadmicus var cypricus
Low altitude form Alyssum chondrogynum, A akamicicum, Centaurea cypresnis, Hyacinthella millingeni, Minuartia pichleri, Thymus integer
62C0 Ponto-Sarmatic steppes

PAL.CLASS.: 34.92

1) Steppes of the plains, plateau and hills of the western Black Sea, west of the Dniester and the basins, including those of the lower Danube, of Transylvania and of northern Thrace, of the southern edge and valleys of the Podolian plateau, of the Central Russian plateau, of the Volga plateau, of Orenburg and of Bashkiria, with grasses such as *Stipa capillata, S. lessingiana, Kochia prostrata, Koeleria lobata (Koeleria degenii), Festuca valesiaca, Dichanthium ischaemum* (syn *Bothriochloa ischaemum*). Includes vegetation in the alliances *Festucion valesiacae, Stipion lessingianae, Agropyro-Kochion and Pimpinello-Thymion zygoidi*.

2) **Plants:** *Festucion valesiacae*: *Poa angustifolia, Festuca valesiaca, Chrysopogon gryllus, Alyssum saxatile, Agropyron pectiniforme*, *Koeleria macrantha, Dichanthium ischaemum, Stipa capillata, Stipa ucraina, Elymus hispidus*;

 Stipion lessingianae: *Stipa lessingiana, S. pulcherrima, S. joannis, Vinca herbacea, Salvia nutans, Cephalaria uralensis, Teucrium polium, Iris pumila, Bromus barcensis, Euphorbia dobrogensis, Crambe tatarica*;

 Artemisia-Kochion: *Kochia prostrata*;

 Pimpinello-Thymion zygoidi: *Agropyron brandiae, Thymus zygoides, Artemisia caucasica, Artemisia pedemontana, Koeleria lobata, Artemisia lerchiana, Festuca callieri, Sedum hillebrandii, Polytrichum piliferum, Melica ciliata, Dianthus nardiformis, Dianthus pseudarmeria, Satureja coerulae, Pimpinella tragium* ss. *lithophila*.

4) Sometimes in association with 40C0 Ponto-Sarmatic deciduous thickets (31.8B7) and 91AA Eastern white oak woods (41.73)

5) **Sanda, V. & Arcus, M., 1999.** *Sintaxonomia grupurilor vegetale din Dobrogea și Delta Dunarii*, Ed. Cultura, Pitești.

62D0 Oro-Moesian acidophilous grasslands

PAL.CLASS.: 36.39

1) Alpine and sub-alpine grasslands developed over crystalline rocks and other lime-deficient substrates or on decalcified soils at 1600 – 2900 m above sea level on high mountains of the Central Balkan Peninsula, including the Balkan Range, Rila, Pirin, Slavyanka, the Central Rhodopes, Ossogovska Planina, Belassitza. The communities are dominated by grasses such as *Festuca paniculata, Bellardiochloa violacea, Festuca airoides, Calamagrostis arundinacea, Festuca nigrescens* and *Agrostis capillaris*. The Balkan endemics *Festuca balcanica, F. riloensis, F. valida, Sesleria comosa* and *Carex bulgarica* also occur in these communities.

Sub-types:

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>36.391</td>
<td>Oro-Moesian Festuca paniculata grasslands</td>
</tr>
<tr>
<td>36.3921</td>
<td>Oro-Moesian Festuca valida grasslands</td>
</tr>
<tr>
<td>36.3922</td>
<td>Balkan Festuca balcanica grasslands</td>
</tr>
<tr>
<td>36.393</td>
<td>Oro-Moesian Poa violacea grasslands</td>
</tr>
<tr>
<td>36.3941</td>
<td>Oro-Moesian criked sedge grasslands</td>
</tr>
<tr>
<td>36.39421</td>
<td>Rhodopide Festuca riloensis grasslands</td>
</tr>
<tr>
<td>36.3943</td>
<td>Oro-Moesian Festuca airoides grasslands</td>
</tr>
<tr>
<td>36.3944</td>
<td>Oro-Moesian Sesleria comosa grasslands</td>
</tr>
<tr>
<td>36.3945</td>
<td>Oro-Moesian Agrostis rupestris grasslands</td>
</tr>
</tbody>
</table>
Plants: Festuca aroides, Festuca balcanica, Festuca nigrescens, Festuca paniculata, F. riloensis, Festuca valida, Bellardiochloa violacea, Calamagrostis arundinacea, Sesleria comosa, Aquilegia aurea, Lilium jankae, Gentiana lutea, Gentiana punctata, Viola rhodopaea, Primula deorum, Carex bulgarica

Sclerophillous grazed forests (dehesas)

6310 Dehesas with evergreen *Quercus* spp.

PAL.CLASS.: 32.11 x 91.2

1) A characteristic landscape of the Iberian peninsula in which crops, pasture land or Mesomediterranean arborescent matorral, in juxtaposition or rotation, are shaded by a fairly closed to very open canopy of native evergreen oaks (*Quercus suber*, *Q. ilex*, *Q. rotundifolia*, *Q. coccifera*). It is an important habitat of raptors, including the threatened Iberian endemic eagle (*Aquila adalberti*), of the crane (*Grus grus*), of large insects and their predators and of the endangered felid (*Lynx pardinus*)

2) Plants: *Quercus suber*, *Q. ilex*, *Q. rotundifolia*, *Q. coccifera*.

Semi-natural tall-herb humid meadows

6410 *Molinia* meadows on calcareous, peaty or clayey-silt-laden soils (*Molinion caeruleae*)

PAL.CLASS.: 37.31

1) *Molinia* meadows of plain to montane levels, on more or less wet nutrient poor soils (nitrogen, phosphorus). They stem from extensive management, sometimes with a mowing late in the year or, they correspond to a deteriorated stage of draining peat bogs.

Sub-types:

37.311: on neutro-alkaline to calcareous soils with a fluctuating water table, relatively rich in species (*Eu-molinion*). The soil is sometimes peaty and becomes dry in summer.

37.312: on more acid soils of the *Junco-Molinion* (*Juncion acutiflori*) except species-poor meadows or on degraded peaty soils.
2) **Plants:** 37.311 - *Molinia caerulea*, *Dianthus superbus*, *Selinum carvifolia*, *Cirsium tuberosum*, *Colchicum autumnale*, *Inula salicina*, *Silalum sila*, *Sanguisorba officinalis*, *Serratula tinctoria*, *Tetragonolobus maritimus*; 37.312 - *Viola persiciflora*, *V. palustris*, *Galium uliginosum*, *Cirsium dissectum*, *Crepis paludosa*, *Luzula multiflora*, *Juncus conglomeratus*, *Ophioglossum vulgatum*, *Inula britannica*, *Lotus uliginosus*, *Dianthus deltoides*, *Potentilla erecta*, *P. anglica*, *Carex pallescens*.

3) **Corresponding categories**

German classification: "35020102 Pfiefengraswiese auf kalkreichen Standort".

Nordic classification: "5233 Carex nigra-Carex panicea-Molinea caerulea-typ", "5234 Carex flacca-Primula farinosa-Orchis spp.-typ" and "5235 Molinia caerulea-typ".

4) In some regions, these grasslands are in close contact with *Nardetalia* communities. For the *Molinia* meadows of river valleys, a transition toward *Cnidion dubii* alliance is observed.

6420 **Mediterranean tall humid herb grasslands of the Molinio-Holoschoenion**

PAL.CLASS.: 37.4

1) Mediterranean humid grasslands of tall grasses and rushes, widespread in the entire Mediterranean basin, extending along the coasts of the Black Sea, in particular in dunal systems.

Hydrophilous tall herb fringe communities of plains and of the montane to alpine levels

PAL.CLASS.: 37.7 and 37.8

1) 37.7 - Wet and nitrophilous tall herb edge communities, along water courses and woodland borders belonging to the Glechometa hederacea and the Convolvuletalia sepium orders (Senecion fluviatilis, Aegopodion podagrariae, Convolvulion sepium, Filipendulion).

37.8 - Hygrophilous perennial tall herb communities of montane to alpine levels of the Betulo-Adenostyletea class.

2) Plants: 37.7 - Glechoma hederacea, Epilobium hirsutum, Senecio fluviatilis, Filipendula ulmaria, Angelica archangelica, Petasites hybridus, Cirsium oleraceum, Chaerophyllum hirsutum, Aegopodium podagraria, Alliaria petiolata, Geranium robertianum, Silene dioica, Lamium album, Lysimachia punctata, Lythrum salicaria, Crepis paludosa; 37.8 - Aconitum lycoctonum (A. vulparia), A. napellus, Geranium sylvaticum, Trollius europaeus, Adenostyles alliariae, Peucedanum ostruthium, Cicerbita alpina, Digitalis grandiflora, Calamagrostis arundinacea, Cirsium helenioides.

3) Corresponding categories

United Kingdom classification: "U17 - Luzula sylvatica-Geum rivale tall herb community".

German classification: "390101 krautiger Ufersaum an besonnten Gewässern", "39050101 feuchter Staudensaaum der planaren bis submontanen Stufe", "390102 krautiger Ufersaum an beschatteten Gewässern (z.B. mit Cardamine amara, Bitteres Schaumkraut)", "35020203 nährstoffreiche, Feucht- bzw. Naßgrünlandbrache der planaren bis submontanen Stufe", "35020303 nährstoffreiche, Feucht- bzw. Naßgrünlandbrache der planaren bis hochmontanen Stufe", "39050201 montane bis hochmontane Hochstaudenflur", "39050202 montane bis hochmontane Hochgrasflur (Calamagrostion arundinaceae)", "6701 subalpine bzw. alpine Hochstaudenflur (Alpen)".

Nordic classification: "126 Högörtängsvegetation".

4) Similar communities to 37.8, with a weak development, occur at lower altitude along rivers and forest borders (in Wallonia -Belgium for example). Nitrophilous edge communities comprising only basal, common species in the region have no conservation priority. These tall herb communities could also develop in wet meadows, let lie fallow, without any cutting. Large areas of wet meadows let lie fallow and neophyte communities with Helianthus tuberosus, Impatiens glandulifera, should not be taken into account.

Alluvial meadows of river valleys of the Cnidion dubii

PAL.CLASS.: 37.23

1) Alluvial meadows with natural flooding regime belonging to the Cnidion dubii alliance, under continental to subcontinental climatic conditions.
2) **Plants:** *Cnidium dubium* (*C. venosum*), *Viola persicifolia*, *Scutellaria hastifolia*, *Allium angulosum* *Oenanthe lachenalii*, *Gratifolia officinalis*, *Carex praecox* var. *suzae*, *Juncus atratus*, *Lythrum virgatum*.

3) **Corresponding categories**

 German classification: "35020201 närrstoffreiche, extensive Feucht- bzw. Naßwiese der planaren bis submontanen Stufe", "35020202 närrstoffreiche, extensive Feucht- bzw. Naßwiese der planaren bis submontanen Stufe (incl. Mähweide)", "350204 Flutrasen".

4) This is a transition habitat between wet and dry meadows and which cover small areas. This point has to taken into account during site selection.

Northern boreal alluvial meadows

PAL.CLASS.: -

1) Along large rivers with placid river sections which are frozen every winter, the type is affected by flooding in spring. The traditional management as hay meadows has usually ceased. Type includes areas that are not yet severely overgrown with trees and bushes.

2) **Plants:** *Carex acuta*, *C. aquatilis*, *C. canescens*, *Calamagrostis purpurea*, *Convallaria majalis*, *Deschampsia cespitosa*, *Elymus fibrosus*, *E. mutabilis*, *Festuca ovina*, *Equisetum fluviatile*, *Galium boreale*, *Molinia caerulea*, *Nardus stricta*, *Phalaris arundinacea*, *Salix triandra*, *Solidago virgaurea*, *Thalictrum simplex* subsp. *boreale*, *Trollius europaeus*.

4) Includes several vegetation types which vary according to the moisture (flooding) gradient: *Equisetum fluviatile*-alluvial meadows, *Carex acuta* or *C. aquatilis*-alluvial meadows, *Calamagrostis*-alluvial meadows, *Phalaris*-alluvial meadows, *Deschampsia caespitosa*-alluvial meadows, tall-herb alluvial meadows, dry alluvial meadows.

Peat grasslands of Troodos

PAL.CLASS.: -

1) *Calamagrostis epipejeos* tall (c. 1m) meadows developing at an altitude of around 1650 m on seasonally inundated depressions, on serpentiniised substrate with basic pH. The meadows are inundated from October-November until June-July, depending on the rainfall but even in summer the soil is wet and muddy. The vegetation cover is thick and the dominant graminoids *C. epipejeos* and *Juncus littoralis* and other herbs form a continuous mat on the soil. The floristic structure is characterised by species which occur only or mainly at this habitat in Cyprus, such as *C. epipejeos*.
and *Poa pratensis*, and by a few endemic species occurring only at the high altitude damp places in the Troodos mountains.

3) **Plants:**

Calamagrostis epigejos, *Juncus littoralis*, *Poa pratensis*, *Polypogon semiverticillatus*, *Ornithogalum chionopilum*, *Pteridium aquilinum*, *Viola siechiana*, *Alyssum cypricum*, *Brachypodium firmifolium*, *Hypericum perforatum*, *Scirpoides holoschoenus*, *Crocus cyprius* (proposed for Annex II and IV), *Schoenus nigrigans*, *Carex divulsa*, *Carex distans*, *Taraxacum holmboei*.

Mesophile grasslands

6510 Lowland hay meadows (*Alopecurus pratensis, Sanguisorba officinalis*)

PAL.CLASS.: 38.2

1) Species-rich hay meadows on lightly to moderately fertilised soils of the plain to submontane levels, belonging to the *Arrhenatherion* and the *Brachypodio-Centaureion nemoralis* alliances. These extensive grasslands are rich in flowers and are not cut before the grasses flower and then only one or two times per year.

3) **Corresponding categories**

United Kingdom classification: "MG4 -*Alopecurus pratensis-Sanguisorba officinalis* grassland".

German classification: "34070101 artenreiche, frische Mähwiese der planaren bis submontanen Stufe", "34070102 artenreiche, frische Weide der planaren bis submontanen Stufe (incl. Mähweide)".

Nordic classification: "5223 *Leucanthemum vulgare*-typ".

Romanian classification: “R3716 - Pajişti danubiano-pontice de *Poa pratensis*, *Festuca pratensis* şi *Alopecurus pratensis*”, “R3802 - Pajişti daco-getice de *Arrhenatherum elatius*”.

4) Wet to dry sub-types occur. If management practices become intensive with heavy applications of fertiliser, the species diversity rapidly declines.

6520 Mountain hay meadows
PAL.CLASS.: 38.31

1) Species-rich mesophile hay meadows of the montane and sub-alpine levels (mostly above 600 metres) usually dominated by *Trisetum flavescens* and with *Heracleum sphondylium, Viola cornuta, Astrantia major, Carum carvi, Crepis mollis, C. pyrenaica, Bistorta major, (Polygonum bistorta), Silene dioica, S. vulgaris, Campanula glomerata, Salvia pratensis, Centaurea nemoralis, Anthoxanthum odoratum, Crocus albilflorus, Geranium phaeum, G. sylvaticum, Narcissus poeticus, Malva moschata, Valeriana repens, Trollius europaeus, Pimpinella major, Muscari botryoides, Lilium bulbiferum, Thlaspi caerulescens, Viola tricolor ssp. subalpina, Phyteuma halleri, P. orbiculare, Primula elatior, Chaerophyllum hirsutum* and many others.

2) **Plants:** *Trisetum flavescens* and with *Heracleum sphondylium, Viola cornuta, Astrantia major, Carum carvi, Crepis mollis, C. pyrenaica, Bistorta major (Polygonum bistorta), Silene dioica, S. vulgaris, Campanula glomerata, Salvia pratensis, Centaurea nemoralis, Anthoxanthum odoratum, Crocus albilflorus, Geranium phaeum, G. sylvaticum, Narcissus poeticus, Malva moschata, Valeriana repens, Trollius europaeus, Pimpinella major, Muscari botryoides, Lilium bulbiferum, Thlaspi caerulescens, Viola tricolor ssp. subalpina, Phyteuma halleri, P. orbiculare, Primula elatior, Chaerophyllum hirsutum, Alchemilla spp., Cirsium heterophyllum.*

3) **Corresponding categories**
United Kingdom classification: "MG3 Anthoxanthum odoratum-Geranium sylvaticum grassland".
British types with *Geranium sylvaticum*.
Nordic classification: "5224 Geranium sylvaticum-typ", "5225 Festuca ovina-Bistorta vivipara-typ" and "5226 Festuca rubra-Bistorta vivipara-typ".
Romanian classification: "R3801 - Pajişti sud-est carpatice de Trisetum flavescens şi Alchemilla vulgaris".

6530 * Fennoscandian wooded meadows
PAL.CLASS.: -

1) A vegetation complex consisting of small copses of deciduous trees and shrubs and patches of open meadows. Ash (*Fraxinus excelsior*), birch (*Betula pendula, B. pubescens*) and *Quercus robur, Tilia cordata, Ulmus glabra* or *Alnus incana* are the common tree species. Nowadays very few areas are managed but traditionally these areas were managed by a combination of raking, hay-cutting, grazing of grassland and pollarding or lopping of trees. Species-rich vegetation complexes with rare and threatened meadow species and well developed epiphytic flora of mosses and lichens are characteristic. Many threatened species preferring old pollarded deciduous trees of semi-open habitats occur. The habitat type includes managed areas and overgrown areas with old pollarded or lopped deciduous trees. The type does not include abandoned meadows being invaded by trees.

2) **Plants:** (In addition to the above mentioned tree species), *Briza media, Corylus avellana, Cotoneaster scandinavicus, Crataegus ssp., Cypripedium calceolus, Dactylorhiza fuchsii, D. Sambucina, Festuca ovina, Geranium sanguineum, Helianthemum nummularium, Listera ovata, Malus sylvestris, Orchis mascula, Plantago lanceolata, Polygala amarella, P. vulgaris, Primula farinosa, Primula veris, Ranunculus ficaria, Rosa ssp., Sorbus hybrida, S. intermedia*

6540 Sub-Mediterranean grasslands of the Molinio-Hordeion secalini

PAL.CLASS.: 37.63

1) Humid grasslands of the alliance *Molinio-Hordeion secalini* found alongside karstic rivers and in karstic fields (poljes) in the Dinaric Alps. These humid meadows were traditionally used as extensive pastures and hay meadows and are flooded or very wet in winter and spring, gradually drying throughout the summer. Because of the extreme differences in soil moisture, there is a mix of hygrophilous plants and plants more typical of dry habitats growing together. These wet grasslands occur within a usually dry Mediterranean landscape and often host endemic species including *Edraianthus dalmaticus*, *Succisella petteri* and *Chouardia litardierei*.

2) **Plants**: *Deschampsia media*, *Hordeum secalinum*, *Edraianthus dalmaticus*, *Succisella petteri*, *Chouardia litardierei*, *Ranunculus muricatus*, *R. sardous*, *Trifolium fragiferum*, *Trifolium resupinatum*, *Trifolium cinctum*, *Oenanthe media*, *Chrysopogon gryllus*, *Bromus erectus*, *Narcissus radiiflorus*, *N. tazetta*.

3) **Corresponding categories**
Croatian classification: “C.2.5.1 Ilirsko-submediteranske livade rječnih dolina”.

Državni zavod za zaštitu prirode (2009). Nacionalna klasifikacija staništa Republike Hrvatske (III. dopunjena verzija) http://www.dzzp.hr/dokumenti_upload/20100527/dzzp201005271405280.pdf

RAISED BOGS AND MIRES AND FENS

Sphagnum acid bogs

7110 Active raised bogs

PAL.CLASS.: 51.1

1) Acid bogs, ombrotrophic, poor in mineral nutrients, sustained mainly by rainwater, with a water level generally higher than the surrounding water table, with perennial vegetation dominated by colourful Sphagna hummocks allowing for the growth of the bog (*Erico-Sphagnetalia magellanici*, *Scheuchzerietalia palustris* p., *Utricularietalia intermedio-minoris* p., *Caricetalia fuscae* p.). The term "active" must be taken to mean still supporting a significant area of vegetation that is normally peat forming, but bogs where active peat formation is temporarily at a standstill, such as after a fire or during a natural climatic cycle e.g., a period of drought, are also included.

2) **Plants**: *Erico-Sphagnetalia magellanici*– Andromeda polifolia, *Carex pauciflora*, *Cladonia* spp., *Drosera rotundifolia*, *Eriophorum vaginatum*, *Odontoschisma sphagni*, *Sphagnum magellanicum*, *S. imbricatum*, *S. fuscum*, *Vaccinium oxyccocos*; in the Boreal region also *Betula nana*,

Animals: Dragonflies- Leucorrhinia dubia, Aeshna subartica, A. caerulea, A. juncea, Somatochlora arctica, S. alpestris; Butterflies- Colias palaeno, Boloria aquilonaris, Coenonympha tullia, Vaccinina optilete, Hypenodes turfosalis, Euphragma subrosa; Spiders- Pardosa sphagnicola, Glyphesis cottonae; Ants- Formica transkaussi; Cricket/Grasshopper- Metrioptera brachyptera, Stethophyma grossum.

3) **Corresponding categories**

United Kingdom classification: "M1 Sphagnum auriculatum bog pool community", "M3 Eriophorum angustifolium bog pool community", "M18 Erica tetralix-Sphagnum papillosum raised and blanket mire", "M20a Eriophorum vaginatum blanket and mixed mire - species poor sub community".

German classification: "360101 Hochmoor der planaren bis submontanen Stufe", "360102 Hochmoor der montanen bis hochmontanen Stufe".

Nordic classification: "312 Ristuvvegetation", "313 Fastmattevegetation", "314 Mjukmatte-och løsbottenvegetation" and "311 Skogmossvegetation" when comprising a part of the mire complexe.

4) In order to support the conservation of this ecosystem over its geographic range and its genetic diversity, marginal areas of lower quality as a result of damage or degradation which abut active raised bogs may need to be included, protected and, where practicable, regenerated. There are very few intact or near-intact raised bogs in Europe, except in Finland and Sweden where active raised bogs are the predominant mire complex type in hemiboreal and southern boreal regions.

7120 Degraded raised bogs still capable of natural regeneration

PALCLASS.: 51.2

1) These are raised bogs where there has been disruption (usually anthropogenic) to the natural hydrology of the peat body, leading to surface desiccation and/or species change or loss. Vegetation on these sites usually contains species typical of active raised bog as the main component, but the relative abundance of individual species is different. Sites judged to be still
capable of natural regeneration will include those areas where the hydrology can be repaired and where, with appropriate rehabilitation management, there is a reasonable expectation of re-establishing vegetation with peat-forming capability within 30 years. Sites unlikely to qualify as SACs are those that consist largely of bare peat, that are dominated by agricultural grasses or other crops, or where components of bog vegetation have been eradicated by closed canopy woodlands.

7130 Blanket bogs (* if active bog)
PAL.CLASS.: 52.1 and 52.2

1) Extensive bog communities or landscapes on flat or sloping ground with poor surface drainage, in oceanic climates with heavy rainfall, characteristic of western and northern Britain and Ireland. In spite of some lateral water flow, blanket bogs are mostly ombrotrophic. They often cover extensive areas with local topographic features supporting distinct communities [Erico-Sphagnetalia magellanici: Pleurozio purpureae-Ericetum tetralicis, Vaccinio-Ericetum tetralicis p.; Scheuchzerietalia palustris p., Utricularietalia intermedio-minoris p., Caricetalia fuscæ p.]. Sphagna play an important role in all of them but the cyperaceous component is greater than in raised bogs. The term "active" must be taken to mean still supporting a significant area of vegetation that is normally peat forming.

Sub-types in the British Isles
52.1 – HyperAtlantic blanket bogs of the western coastlands of Ireland, western Scotland and its islands, Cumbria, Northern Wales ; bogs locally dominated by sphagna (Sphagnum auriculatum, S. magellanicum, S. compactum, S. papillosum, S. nemoreum, S. rubellum, S. tenellum, S. subnitens), or, particularly in parts of western Ireland, mucilaginous algal deposits (Zygogonium).
52.2 – Blanket bogs of high ground, hills and mountains in Scotland, Ireland, Western England and Wales.

Animals: birds - Pluvialis apricaria, Calidris alpina.

3) Corresponding categories

4) In the United Kingdom discrete areas of raised bog and blanket bog may occur in some districts, showing their characteristic differences. In many other areas, however, peatlands which may have begun as raised bog have become merged in a general expanse of blanket bog, losing their distinctive marginal features. Within these blanket bogs, there are other peat-forming systems which, strictly speaking, form part of various biotopes of aquatic and amphibious zones, fens and moorland.

7140 Transition mires and quaking bogs
PAL.CLASS.: 54.5

1) Peat-forming communities developed at the surface of oligotrophic to mesotrophic waters, with characteristics intermediate between soligenous and ombrogenous types. They present a large and diverse range of plant communities. In large peaty systems, the most prominent communities are swaying swards, floating carpets or quaking mires formed by medium-sized or small sedges, associated with sphagnum or brown mosses. They are generally accompanied by aquatic and amphibious communities. In the Boreal region this habitat type includes minerotrophic fens that are not part of a larger mire complex, open swamps and small fens in the transition zone between water (lakes, ponds) and mineral soil.
These mires and bogs belong to the Scheuchzerietalia palustris order (oligotrophic floating carpets among others) and to the Caricetalia fuscae order (quaking communities). Oligotrophic water-land interfaces with Carex rostrata are included.

3) Corresponding categories
German classification: "360201 Übergangs- oder Zwischenmoor der planaren bis submontanen Stufe", "360202 Übergangs- oder Zwischenmoor der montanen bis hochmontanen Stufe".

4) Associated with amphibious communities (22.3), fens (54.2 et 54.4), bogs (51.1-2) or humid grasslands (37.2-3).

Depressions on peat substrates of the *Rhynchosporion*

PAL. CLASS.: 54.6

1) Highly constant pioneer communities of humid exposed peat or, sometimes, sand, with *Rhynchospora alba*, *R. fusca*, *Drosera intermedia*, *D. rotundifolia*, *Lycopodiella inundata*, forming on stripped areas of blanket bogs or raised bogs, but also on naturally seep- or frost-eroded areas of wet heaths and bogs, in flushes and in the fluctuation zone of oligotrophic pools with sandy, slightly peaty substratum. These communities are similar, and closely related, to those of shallow bog hollows (51.122) and of transition mires (54.57).

2) **Plants:** *Rhynchospora alba*, *R. fusca*, *Drosera intermedia*, *D. rotundifolia*, *Lycopodiella inundata*.
Fennoscandian mineral-rich springs and springfens

1) Springs and springfens are characterized by continuous flow of ground-water. The water is cold, of even temperature, and rich in oxygen and minerals, due to the rapid percolation. Springs may have a basin where the water wells up and an adjacent outflow with typical vegetation. In springfens the water seeps up through the ground and the accumulated peat, enhancing the growth of specialized vegetation. Since the water originates from deeper layers, these springs often have running water during the winter even if the surrounding areas are frozen and snow-covered. The invertebrate fauna is often very specific to this habitat and the flora rich in northern species.

3) Corresponding categories
Nordic classification : 3511 Sphagnum - Drepanocladus -type, 3512 Montia fontana-Epilobium hornemanni-type, 3513 Saxifraga stellaris-Philonotis fontana-type, 3521 Philonotis-type, 3523 Paludella-type, 3432 Filipendula ulmaria - Carex spp. - Drepanocladus spp. - Paludella squarrosa -type

Calcareous fens

Calcareous fens with Cladium mariscus and species of the Caricion davallianae

1) Cladium mariscus beds of the emergent-plant zones of lakes, fallow lands or succession stage of extensively farmed wet meadows in contact with the vegetation of the Caricion davallianae or other Phragmition species [Cladietum marisci (Allorge 1922) Zobrist 1935].

2) Plants: Cladium mariscus, #Kostelezkia pentacarpos.

3) Corresponding categories
meadow", "SD14 Salix repens-Campylium stellatum dune slack" and "SD 15 Salix repens-Calliergon cuspidatum dune slack".

German classification: "3804 Schneidenröhricht".
Nordic classification: "3441a Cladium mariscus-variant".

4) In contact with calcareous fens (7230), but also with acid fens, extensive wet meadows, other reed beds and tall sedge communities.

7220 * Petrifying springs with tufa formation (Cratoneurion)
PAL.CLASS.: 54.12

1) Hard water springs with active formation of travertine or tufa. These formations are found in such diverse environments as forests or open countryside. They are generally small (point or linear formations) and dominated by bryophytes (Cratoneuron commutati).

2) Plants: Arabis soyeri, Cochlearia pyrenaica (in sites with heavy metals), Pinguicula vulgaris, Saxifraga aizoides. Mosses: Catoscopium nigrum, Cratoneuron commutatum, C. commutatum var. falcatum, C. filicinum, Eucladium verticillatum, Gymnostomum recurvirostrum. In the Boreal region also Carex appropinquata, Epilobium davuricum, Juncus triglumis, Drepanocladus vernicosus, Philonotis calcarea, Scorpidium revolvens, S.cossoni, Cratoneuron decipiens, Bryum pseudotriquetrum.

3) Corresponding categories
United Kingdom classification: "M37 Cratoneuron commutatum-Festuca rubra spring community" and "M38 Cratoneuron commutatum-Carex nigra spring community".

German classification: "220102 kalkreiche Sicker- und Sumpfquelle", "220302 kalkreiche Sturzquelle", "220402 kalkreiche, temporäre Sicker- und Stumpfquelle", "220502 kalkreiche, temporäre Sturzquelle".

Nordic classification: "3521 Philonotis-typ" and "3522 Cratoneuron-typ".

4) Can form complexes with transition mires, fens, chasmophytic communities of cold and humid environments and heaths and calcareous grassland (Festuco-Brometalia).

In order to preserve this habitat of very limited expanse in the field, it is essential to preserve its surroundings and the whole hydrological system concerned.

7230 Alkaline fens
PAL.CLASS.: 54.2

1) Wetlands mostly or largely occupied by peat- or tufa-producing small sedge and brown moss communities developed on soils permanently waterlogged, with a soligenous or topogenous base-rich, often calcareous water supply, and with the water table at, or slightly above or below, the substratum. Peat formation, when it occurs, is infra-aquatic. Calciophile small sedges and other Cyperaceae usually dominate the mire communities, which belong to the Caricion davallianae, characterised by a usually prominent "brown moss" carpet formed by Campylium stellatum,
Drepanocladius intermedius, D. revolvens, Cratoneuron commutatum, Acrocladium cuspidatum, Ctenidium molluscum, Fissidens adiantoides, Bryum pseudotriquetrum and others, a grasslike growth of Schoenus nigricans, S. ferrugineus, Eriophorum latifolium, Carex davalliana, C. flava, C. lepidocarpa, C. hostiana, C. panicca, Juncus subnodulosus, Scirpus cespitosus, Eleocharis quinqueflora, and a very rich herbaceous flora including Tofieldia calyculata, Dactylorhiza incarnata, D. traunsteineri, D. traunsteinerioides, D. russowii, D. majalis ssp. brevifolia, D. cruenta, Liparis loeselii, Herminium monorchis, Epipactis palustris, Pinguicula vulgaris, Pedicularis sceptrum-carolinum, Primula farinosa, Swertia perennis. Wet grasslands (Molinietalia caerulea, e.g. Juncetum subnodulosi & Cirsietum rivularis, 37), tall sedge beds (Magnocaricion, 53.2), reed formations (Phragmition, 53.1), fen sedge beds (Cladietum mariscae, 53.3), may form part of the fen system, with communities related to transition mires (54.5, 54.6) and amphibious or aquatic vegetation (22.3, 22.4) or spring communities (54.1) developing in depressions. The sub-units below, which can, alone or in combination, and together with codes selected from the categories just mentioned, describe the composition of the fen, are understood to include the mire communities sensu stricto (Caricion davallianae), their transition to the Molinion, and assemblages that, although they may be phytosociologically referable to alkaline Molinion associations, contain a large representation of the Caricion davallianae species listed, in addition to being integrated in the fen system; this somewhat parallels the definition of an integrated class Molinion-Caricetalia davallianae in Rameau et al., 1989. Outside of rich fen systems, fen communities can occur as small areas in dune slack systems (16.3), in transition mires (54.5), in wet grasslands (37), on tufa cones (54.121) and in a few other situations. The codes below can be used, in conjunction with the relevant principal code, to signal their presence. Rich fens are exceptionally endowed with spectacular, specialised, strictly restricted species. They are among the habitats that have undergone the most serious decline. They are essentially extinct in several regions and gravely endangered in most.

2) **Plants**: Schoenus nigricans, S. ferrugineus, Carex spp., Eriophorum latifolium, Cinclidium stygium, Tomentypnum nitens.

3) **Corresponding categories**
Nordic classification: 34 Rikkärrvegetation-typ", "352 Rik källkärrvegetation".

7240

Alpine pioneer formations of Caricion bicoloris-atrofuscae

PAL.CLASS.: 54.3

1) Alpine, peri-Alpine and northern British communities colonising neutral to slightly acid gravelly, sandy, stony, sometimes somewhat arilgous or peaty substrates soaked by cold water, in moraines and on edges of springs, rivulets, glacial torrents of the alpine or sub-alpine levels, or on alluvial sands of pure, cold, slow-flowing rivers and calm backwaters. A permanent or continuous soil frost over a long period is essential for the existence of this habitat type. Low vegetation composed principally of species of Carex and Juncus (Caricion bicoloris-atrofuscae).

Animals: #Vertigo geyeri, #V. genesii.

3) **Corresponding categories**
German classification: "6402 Alpine Sewemmböden mit niedriger Vegetation".
Corresponding category of the Nordic vegetation types: "3422 Carex atrofusca-Drepanocladus revolvens-typ" and "3423 Carex saxatilis-Drepanocladus revolvens-typ".

4) Associated with humid meadows managed extensively, but also with communities of Caricion davalliinae.

Boreal mires

7310 * Aapa mires

PAL.CLASS.: 54.8

1) Mire complexes in southern, middle and northern boreal zones characterised by minerotrophic fen vegetation in the central parts of the complexes. Hydro-topographical mire-units are: mixed mires, string-fens, flark-fens, unraised *Sphagnum fuscum*-bogs, unpatterned topogenous or soligenous lawn-, carpet or mud-bottom fens. Poor *Sphagnum* fens are the most common vegetation types whilst brown moss fens can be common in some regions. In prealpine areas in Sweden and in hill regions of Kainuu and Kuusamo in eastern Finland, sloping fens (>5 grades) are typical variants of aapa mires. They occur rarely also in the Suomenselkä water divide region in western Finland as well in Lapland. In the mire margins, pine mires and spruce swamps and mires on thin peat of different types dominate. In some limited areas with calcareous bedrock rich fens dominate in the complexes.

Animals: Butterflies - *Pyrgus centaureae*, *Erebia disa*; Moths: *Syngrapha diasema*, *Apamea maillardi*, *Nola karelica*, *Hypoxyties pluviaria*.

7320 * Palsa mires

PAL.CLASS.: 54.9

1) Mire complexes in the northern boreal, orohemiarctic and alpine regions, where the climate is slightly continental and the mean annual temperature is below -1º. The mires are mainly minerotrophic, excluding the palsas, which are peat mounds with sporadic permafrost. The palsas are usually 2-4 metres high, but up to 7 metres high palsas have been found in Finland and Sweden.
ROCKY HABITATS AND CAVES

Scree

8110 Siliceous scree of the montane to snow levels
(Androsacetalia alpinae and Galeopsietalia ladani)

PAL.CLASS.: 61.1

1) This habitat consist of:
 a) communities of siliceous scree of the upper montane level to the permanent snow level, growing on
 more or less moving "cryoclastic systems" with variable granulometry and belonging to the order
 Androsacetalia alpinae.
 b) vegetation of the montane level of the west and centre of Europe growing on screes sometimes of
 artificial origin (extraction of materials). It consists of alpine communities often rich in bryophytes,
 lichens and sometimes in ferns (Cryptogramma crispa), belonging to the order Galeopsietalia.

2) Plants: a) Androsacetalia alpinae: Androsace alpina, Achillea nana, Oxyria digyna, Geum reptans,
 Saxifraga bryoides, Ranunculus glacialis, Linaria alpina, Cerastium uniflorum, D. grandiflorum,
 Poa laxa, Viola valderia, Luzula alpinopilosa, Cryptogramma crispa; Veronica baumgartenii, Saxifraga
carpatica, Senecio carniolicus, Poa contracta, Festuca picta. Saxifraga pedemontana ssp. cymosa, Silene
 acaulis, Androsace chamaejasme b) Galeopsietalia ladani: Galeopsis
ladanum ssp. ladanum, Anarrhinum bellidiflorum, Cryptogramma crispa, Athyrium alpestre (A..
distentifolium).

3) Corresponding categories
 United Kingdom classification: "U21 Cryptogramma crispa-Deschampsia flexuosa community" and
 "U18 Cryptogramma crispa-Athyrium distentifolium snow bed".
 German classification: "6304 Silikatschutthalde der Alpen".
 Nordic classification: "1251a Cryptogramma crispa-variant", "7141 Veronica fruticans -typ" and
 "7142 Veronica fruticans-Juniperus communis -typ".

4) This habitat is generally in close association with the chasmophytic vegetation on siliceous rocky
 slopes (8220). In Ireland and the United Kingdom, sites sheltering rare arctic-alpine plants (post glacial
 remnants) have a high conservation value.

8120 Calcareous and calcshist screes of the montane to alpine levels

(Thlaspietea rotundifolii)

PAL.CLASS.: 61.2

1) Calcshist, calcareous, or marl screes of the montane to alpine levels under cold climates, with the associations respectively of *Drabion hoppeanae, Thlaspion rotundifolii, Petasition paradoxi*.

2) **Plants:**

3) **Corresponding categories**

 - United Kingdom classification: "OV38 - Gymnocarpium robertianum-Arrhenatherum elatius community".
 - German classification: "6302 Kalkschutthalde der Alpen".
 - Nordic classification: "7143 Arenaria norvegica-typ".

4) In Ireland and United Kingdom preference should be given to sites sheltering rare arctic-alpine plants (post glacial remnants).

8130 Western Mediterranean and thermophilous scree

PAL.CLASS.: 61.3

1) Screes of warm exposures in the Alps and the Pyrenees, of calcareous substrates in the Pyrenees, of Mediterranean mountains, hills and lowlands and, locally, of warm, sunny middle European upland or lowland sites. The vegetation belongs to the *Androsacetalia alpinae* p., *Thlaspietalia rotundifolii* p., *Stipetalia calamagrostis* and *Polystichetalia lonchitis* orders.

Sub-types:

 - 61.31 - Peri-Alpine thermophilous screes. *Stipion calamagrostidis, Leontodontion hyoseroidis*.
 - Mostly coarse, unstabilized, sunny calcareous screes of the montane and sub-alpine levels of the Alps and of the uplands and lowlands of western and central middle Europe.
 - 61.32 - Provençal screes. *Pimpinello-Gouffeion*.
 - Screes of Mediterranean southern France, with *Gouffeia arenarioides, Psychotis heterophylla, Linaria supina, Centranthus ruber, Crucianella latifolia*.
61.33 - Pyreneo-Alpine thermo-siliceous screes. *Senecio leucophyllae, Taraxacum pyrenaici.* Siliceous screes of warm slopes of the sub-alpine level of the Alps and of the alpine and sub-alpine levels of the Pyrenees, usually composed largely of big stones or boulders, with *Senecio leucophyllus, Taraxacum pyrenaicum, Galeopsis pyrenaica, Xatartia scabra, Armeria alpina.*

61.34 - Pyrenean calcareous screes. *Iberidion spatulatae.* Calcaceous screes of the Pyrenees.

61.36 - Oro-Cantabrian siliceous screes. *Linarion filicaulis p., Linario-Senecion carpetani p.* Siliceous screes of the Cordillera Cantabrica; floristically rich formations of the "dark" screes of the Cordillera are related to those of 61.351, though somewhat intermediate towards 61.38; other more species-poor ones, characterised by *Trisetum hispidum* and *Rumex suffruticosus*, belong to the latter.

61.38 - Carpetano-Iberian siliceous screes. *Linario-Senecion carpetani.* Screes of the Cordillera Central, the Iberian Range, the Leonese mountains, with *Linaria saxatilis, L. alpina, Digitalis purpurea var. carpetana, Senecio pyrenaicus ssp. carpetanus, Rumex suffruticosus, Santolina oblongifolia, Conopodium butiniioides, Reseda gredensis.*

61.39 - Nevadan siliceous screes. *Holcion caespitosae.* Siliceous screes of the high levels of the Sierra Nevada, very rich in endemics.

61.3B - Central Mediterranean screes Screes of the Italian peninsula and of the large Mediterranean islands.

2) **Plants:**

61.31 - *Achnatherum calamagrostis, Galeopsis angustifolia, Gymnocarpium robertianum, Lentodon hyoseroides, Sisymbrium supinum, Linaria supina; 61.32 - Gouffeia arenarioidei, Pychotis heterophylla, Centranthus ruber, Crucianella latifolia; 61.33 - Senecio leucophyllus, Taraxacum pyrenaicum, Xatartia scabra, Armeria alpina; 61.34 - Iberis spatulata, Papaver suaveolens, Galium comertirhizon, Plantago monospensera, Viola lapeyrourusiana, Campanula jaubertiana, Crepis pygmaea, Doriocum grandiflorum, Campanula cochleariaefolia, Carduus carlinoides, Galium cespitosum, Festuca glacialis, Androsace ciliata, Saxifraga oppositifolia, Hutchinsia alpina, Gailium pyrenaicum, Minuartia cerastifolia, Saxifraga praetermissa, S. aizoides, Epilobium anagallidifolium, Veronica alpina, Taraxacum alpinum, Crepis pygmaea; 61.35 - Linaria filicaulis, Arabis cantabrica, Iberis lereschiana, Ranunculus parnassifolius ssp. favargeri, Crepis pygmaea, Iberis aperta, Rumex scutatus, Epilobium anagallidifolium, Doriocum grandiflorum ssp. braunianquetii, Campanula arvatica, Saxifraga praetermissa, Arabis cantabrica, Ranunculus alpestris ssp. leroyi, Salix breviserrata, Gailium pyrenaicum; 61.38 - Linaria saxatilis, L. alpina, Digitalis purpurea var. carpetana, Senecio pyrenaicus ssp. carpetanus, Rumex suffruticosus, Santolina oblongifolia, Conopodium butiniioides, Reseda gredensis; 61.39 - Senecio tournefortii var. granatensis, Digitalis purpurea var. nevadensis, Cirsium gregarium, Solidago virgaurea var. alpestris, Holcus caespitosus, Crepis opinorinoides, Eryngium glaicale, Linaria aeruginea var. nevadensis, Viola crassiuscula, Linaria glacialis, Rhynchosinapis cheiranthos ssp. nevadensis, Ranunculus glacialis, R. parnassifolius, Saxifraga oppositifolia, Papaver suaveolens, Holcus caespitosus, Crepis opinorinoides.
8140 Eastern Mediterranean screes
PAL.CLASS.: 61.4, 61.5

1) Limestone and serpentine screes of the Balkan Peninsula and larger islands in the Eastern Mediterranean with vegetation of the order Drypidetalia spinosae.
 Sub-types:
 61.41 - Greek limestone screes. Drypion spinosae (Silenion caesiae).
 Formations of the higher mountains of Greece (Pindus, Olympus, Parnassus, Giona, Taygetos, Kilini), with Drypis spinosa, Ranunculus brevifolius, Senecio thapsoides, Aethionema saxatile.
 61.42 - Greek serpentine screes. Campanulion hawkinsonianae.
 Less widespread formations restricted to serpentines of the Pindus, with Campanula hawkinsoniana, Arenaria serpentini, Cardamine glauca, Viola magellensis, Alyssum scardicum, Silene haussknechtii.
 61.5 - Illyrian screes Peltarion alliaceae
 Calcareous and serpentine screes of the alpine, subalpine and, locally, montane, levels of the Dinarides, the Pelagonides and the Moeso-Macedonian mountains, and of the upper mesomediterranean and supramediterranean Orno-Quercetum ilicis and Ostryo-Carpinion adriaticum zones of Croatia (Istria, the Dalmatian coast) and Montenegro.

2) Plants:
 61.41 - Drypis spinosa, Ranunculus brevifolius, Senecio thapsoides, Aethionema saxatile;
 61.42 - Campanula hawkinsoniana, Arenaria serpentini, Cardamine glauca, Viola magellensis, Alyssum scardicum, Silene haussknechtii, 61.5 - Anthriscus fumarioides, Drypis spinosa ssp. jacquiniana, Linaria microsepala, Peltaria alliacea.

3) Corresponding categories
 Croatian classification: "B.2.2 Ilirsko-jadranska, primorska točila".

 http://www.dzzp.hr/dokumenti_upload/20100527/dzzp201005271405280.pdf

8150 Medio-European upland siliceous screes
PAL.CLASS.: 61.12

1) Siliceous screes of hills of western and central Europe, with Epilobium collinum, Galeopsis segetum, Senecio viscosus, Anarrhinum bellidifolium, Cryptogramma crispa. Upland siliceous screes, often resulting from quarry activity, and colonised by very impoverished forms of the Alpine communities, usually rich in mosses, lichens and sometimes ferns, notably Cryptogramma crispa, are included, but should not be taken into account.

2) Plants: Epilobium collinum, Galeopsis segetum, Senecio viscosus, Anarrhinum bellidifolium, Cryptogramma crispa
8160 * Medio-European calcareous scree of hill and montane levels

PAL CLASS.: 61.313

1) Calcareous or marly screes of the hill and montane levels extending into mountainous regions (subalpine and alpine), often in dry, warm stations in associations with Stipetalia calamagrostis. This habitat type should be clearly distinguished from 8130 - Western Mediterranean and thermophilous scree, a non-priority Annex I habitat type.

2) Plants: Achnatherum calamagrostis, Dryopteris robertiana (=Gymnocarpium robertianum), Galeopsis angustifolia, Petasites paradoxus, Rumex scutatus.

3) Corresponding categories
 German classification: "320401 natürliche Schutthalde aus Karbonatgestein".
Rocky slopes with chasmophytic vegetation

8210

Calcareous rocky slopes with chasmophytic vegetation

PAL.CLASS.: 62.1

1) Vegetation of fissures of limestone cliffs, in the Mediterranean region and in the Euro-Siberian plain to alpine levels, belonging essentially to the *Potentilletalia caulescentis* and *Asplenietalia glandulosi* orders. Two levels may be identified: a) thermo- and meso-Mediterranean (*Onosmetalia frutescente*) with *Campanula versicolor*, *C. rupestris*, *Inula attica*, *I. mixta*, *Odontites luskii*; b) montane and oro-Mediterranean (*Potentilletalia speciosae*, including *Silenion auriculatae*, *Galion degeni* and *Ramondion nathaliae*). This habitat type presents a great regional diversity, with many endemic plant species (indicated under point 2).

2) **Plants:**

62.11 - Western Mediterranean communities (*Asplenion petrarchae*): *Asplenium petrarchae*, *Asplenium trichomanes* ssp. *pachyrachis*, *Cheilanthes acrostica*, *Melica minuta*, *Hieracium stelligerum*, *Erodium petraeum*;

62.12 - Central Pyrenean communities (*Saxifragion mediae*): *Asperula hirta*, *Androsace cylindrica*, *Asplenium celtibericum*, *Saxifraga media*, *S. longifolia*, *S. aretioides*, *Potentilla alchimilloides*, *P. nivalis*, *Ramonda myconi*, *Ptilotrichum pyrenaicum*.

62.14 - Southern Italian communities (*Dianthion rupicolae*): *Dianthus rupicola*, *Antirrhinum siculum*, *Cymbalaria pubescens*, *Scabiosa limonifolia*.

62.15 and 62.1B - Euro-Siberian communities and Mediterranean communities of the supra to oro-Mediterranean levels (*Potentilletalia caulescentis*):

- shady communities: *Cystopteris fragilis*, *Asplenium trichomanes*, *Asplenium viride*, *Campanula carpatica*, *Saxifraga cuneifolia*, *Valeriana sambucifolia*

- xerophilous communities: *Ceterach officinarum*, *Asplenium ruta-muraria*, *Draba aizoides*, *Kernera saxatilis*, *Biscutella laevigata*.

- Centre and Southern Italian communities (*Saxifragion australis*): *Saxifraga australis*, *Potentilla nebrodensis*, *Campanula tanfanii*, *Trisetum bertolionii*.

62.16, 62.17, 62.18, 62.19 and 62.1A - *Illyrio-Helleno-Balkanic* and *Southern Italian calcareous cliff communities* (*Campanulion versicoloris*, *Cirsietalia chamaepeucis*, *Silenion auriculatae*, *Ramondion nathaliae*, *Micromerion pulegii*).

62.1C - Boreal communities with *Asplenium viride*, *Woodsia glabella*.

3) **Corresponding categories**

German classification: "320101 natürlicher Karbonatfels (Kalk, Dolomit)".

Nordic classification: "712 Klippvegetation på rika/kalkbergarter".

4) This habitat constitutes mosaics with *Xerobrometea* communities (34.1, 34.31-34.34), scree (61) and limestone pavements (62.4).
In Ireland and the United Kingdom: sites sheltering relict arctic-alpine flora and important bryophyte and/or lichen assemblages.

8220 Siliceous rocky slopes with chasmophytic vegetation

PAL.CLASS.: 62.2

1) Vegetation of fissures of siliceous inland cliffs, which presents many regional sub-types, described under point 2.

2) Plants: 62.21 - Alpine siliceous cliff vegetation (Pyrenees and Alps) and of Hercynian system and its periphery (*Androsacion vandelli*): *Androsace vandelli*, *Saxifraga retusa* ssp. *retusa*, *S. aspera*, *Phyteuma scheuchzeri*, *Primula hirsuta*, *Eritrichium nanum*; Communities of montane level of Pyrenees and Cevennes (*Asarion procumbentis*): includes 62.26: *Asarina procumbens*, *Dianthus graniticus*, *Saxifraga continentalis*, *S. prostii*, *Anarrhinum bellidifolium*; Saxicolous communities of the plain to hill levels under Middle European climate (*Asplenion septentrionalis*): includes 62.29: *Asplenium septentrionale*, *A. adiantum-nigrum*, *A. billotii*, *A. foreziense*, *A. onopteris*. - Hercynian serpentine cliffs (*Asplenion cuneifolii*): *Asplenium cuneifolium*, *A. alternifolium*, *A. adulterinum*.

62.22 - high altitude siliceous cliff vegetation of Iberian mountains: - Central Iberian mountains (*Saxifragion willkommianae*): *Saxifraga willkommiana*, *S. orogredensis*, *Murbeckiella boryi*; - Sierra Nevada (*Saxifragion nevadensis*): *Saxifraga nevadensis*.

62.27 - Western Iberian siliceous cliff vegetation of the submontane level (*Cheilanthion hispanicae*): *Cheilanthes hispanica*, *C. tiniae*. 62.28 - Provenço-Iberian siliceous cliff vegetation on rock faces rich in basic silicates (basalts and peridots), of the thermo to meso-Mediterranean levels (*Phagnalo saxatilis-Cheilanthion maderensis*): *Cheilanthes maderensis*, *C. marantae*, *C.vellaea*, *Asplenium balearicum*. 62.29 : see 62.21.

62.2A - Boreal siliceous cliffs (rapakivi cliffs).

3) Corresponding categories
German classification: "320102 natürlicher Silikatfels (ohne Serpentinit)"; "320103 natürlicher Serpentinitfels".
Nordic classification: "711 Klippvegetation på fattiga bergarter", "713 Klippvegetation på serpentinbergarter."
4) This habitat type is found in close association with siliceous scree (8110) and pioneer grassland (8230). In Ireland and the United Kingdom: sites sheltering relict arctic-alpine flora and important bryophyte and/or lichen assemblages.

8230 Siliceous rock with pioneer vegetation of the Sedo-Scleranthion or of the Sedo albi-Veronicion dillenii

PAL.CLASS.: 62.42

1) Pioneer communities of the Sedo-Scleranthion or the Sedo albi-Veronicion dillenii alliances, colonising superficial soils of siliceous rock surfaces. As a consequence of drought, this open vegetation is characterised by mosses, lichens and Crassulacea.

3) Corresponding categories

German classification : "320102 natürlicher Silikatfels (ohne Serpentinit) (lückige Vegetation, P002)". Nordic classification : partly "711 Klippvegetation på fattiga bergarter" and "5211 Sedum spp.- Viola tricolor-Aira praecox-typ".

4) This habitat is associated with the 8220 type, and corresponds to the vegetation colonising siliceous rocks. The vegetation colonising calcareous rocks is included under 6110 " Rupicolous calcareous or basophilic grasslands of the Alysso-Sedion albi" and 8240 "Limestone pavements.

1) Regular blocks of limestone known as "clints" with loose flags separated by a network of vertical fissures known as "grykes" or "shattered pavements", containing more loose limestone rubble. The rock surface is almost devoid of overlying soils (considerably less than 50% cover) except for some patches of shallow skeletal or loessic soils, although more extensive areas of deeper soil occasionally occur; sometimes there is encroachment of peat. This morphology offers a variety of microclimates allowing the establishment of complex vegetation consisting of a mosaic of different communities. The fissures provide a cold humid microclimate where shade-tolerant vascular plants such as *Geranium robertianum* and *Ceterach officinale* occur, as well as formations of herbaceous species typical of calcareous woodland; the small pockets of soil are occupied by communities of *Mesobromion* (e.g. *Seslerio-Mesobromenion*); heath and scrub also occur (e.g. *Corylo-Fraxinetum*). Apart from areas of species rich scrub (generally *Prunetalia spinosae*), the ecosystem is maintained by grazing in some regions; this, combined with severe winds, means that isolated shrubs can only survive in prostrate growth form (e.g. *Dryas octopetala*); at the margins of ungrazed sites *Geranium sanguineum* occurs.

In Sweden, limestone blocks are larger and cracks are smaller. The species composition reflects a more continental, dryer and cooler climate. The pavements are mostly exposed with scattered cushions of bryophytes, more seldom covered by a thin layer of soil. The surface is covered by *Sedum album*, *Cerastium pumilum*, *C. semidecandrum*, lichens (*Aspicilia calcarea*, *Thamnolia vermicularis*, *Verrucaria nigrescens*) and bryophytes (*Tortella tortuosa*, *Grimmia pulvinata*). The vegetation in the cracks contains *Gymnocarpium robertianum*, *Asplenium ruta-muraria*, *A. trichomanes* ssp. *quadrivalens* and, occasionally, bushes of *Prunus spinosa*, *Fraxinus excelsior*, *Cotoneaster* spp., *Rosa* spp.

Some sites in Ireland host an open *Taxus-Juniperus* scrub of major interest; certain arctic alpine species such as *Gentiana verna* and *Dryas octopetala* are characteristic and in The Burren, these species occur with Atlantic-Mediterranean species such as *Neotinea maculata*.

3) Corresponding categories

United Kingdom classification: "W8 *Fraxinus excelsior-Acer campestre-Mercurialis perennis woodland" and "W9 *Fraxinus excelsior-Sorbus aucuparia-Mercurialis perennis woodland".

Very locally in the United Kingdom, ancient woodland containing *Tilia cordata* occurs which is of great conservation importance.

Nordic classification: "5151b *Asplenium ruta-muraria-Asplenium trichomanes-Homalothecium sericeum-variant" variant of "5151 *Sedum album-Tortella* spp. typ".

Etherington, J.R. (1981). Limestone heaths in south-west Britain: their soils and the maintenance of their calcicole-calcifuge mixtures.

Other rocky habitats

8310 Caves not open to the public
PAL.CLASS.: 65

1) Caves not open to the public, including their water bodies and streams, hosting specialised or high endemic species, or that are of paramount importance for the conservation of Annex II species (e.g. bats, amphibians).

2) Plants: mosses only (e.g. *Schistostega pennata*) and algal carpets at the entry of caves.
Animals: Very specialised and highly endemic cavernicolous fauna. It includes underground relic forms of a fauna which has been diversified outside. This fauna is mainly composed of invertebrates which exclusively live in caves and underground waters. The cavernicolous terrestrial invertebrates are mainly coleoptera, belonging to the *Bathysciinae* and *Trechinae* families in particular, which are carnivorous and have a very limited distribution. Cavernicolous aquatic invertebrates constitute a highly endemic fauna, dominated by crustaceans (*Isopoda, Amphipoda, Syncarida, Copepoda*) and include many living fossils. Aquatic molluscs, belonging to the *Hydrobiidae* family are also found. With regard to vertebrates, caves constitute hibernation sites for most European bat species, among which many are threatened (see Annex II). Several species can live together in the same cave. Caves also shelter some very rare amphibious species like *Proteus anguinus* and several species of the *Speleomantes* genus.

3) Corresponding categories
German classification: "3101 natürliche Höhlen und Balmen", "310201 Balme (Halbhöhle) bzw. Eingangsbereich mit Tageslichteinfuß", "310202 natürliche Höhle (Bereiche ohne Tageslichteinfuß).

8320 Fields of lava and natural excavations
PAL.CLASS.: 66.1 to 66.6

1) Sites and products of recent volcanic activity harbouring distinct biological communities.
Sub-types:
 66.1 - Teide violet community. *Violetea cheiranthifoliae*.
 Very open formation of the summit of the Teide volcano of Tenerife, above (2700) 3000 metres, with *Viola cheiranthifolia* and a few individuals of *Silene nocteolens* and *Argyranthemum teneriffae*.
 66.2 - Etna summital communities
 Communities of Mount Etna, above the limit of hedgehog heaths.
 66.3 - Barren lava fields
 Almost bare lava formations of other volcanoes, and of lower altitudes on Etna and Teide, colonised by, besides communities related to ones covered in other sections, lichens (e.g. *Stereocaulon vesubianum*) and invertebrates.
 66.4 - Volcanic ash and lapilli fields
 66.5 - Lava tubes
Caves formed by hollow basaltic tubes resulting from the cooling of the surface of lava flows whose molten interior continued to flow. The very large tube created by the volcano La Corona of Lanzarote harbours unique communities of invertebrates, in particular, the decapode crustacean *Munidopsis polymorpha*, endemic to that locality, and several crustaceans of the genus *Speleonectes*.

66.6 - Fumaroles
Orifices in volcanic areas through which escape hot gases and vapours. Their very extreme environment is colonised by paucispecific but highly distinct communities.

2) **Plants:** *Viola cheiranthifolia, Silene nocteolens, Argyranthemum teneriffae*; **Lichens:** *Stereocaulon vesubianum*.
Animals: crustaceans: *Munidopsis polymorpha, Speleonectes* spp.

8330 Submerged or partially submerged sea caves
PAL.CLASS.: 12.7, 11.26, 11.294

1) Caves situated under the sea or opened to it, at least at high tide, including partially submerged sea caves. Their bottom and sides harbour communities of marine invertebrates and algae.

8340 Permanent glaciers
PAL.CLASS.: 63.2 and 63.3

1) Rock and true glaciers.

FORESTS

(Sub)natural woodland vegetation comprising native species forming forests of tall trees, with typical undergrowth, and meeting the following criteria: rare or residual, and / or hosting species of Community interest 20

Forests of Boreal Europe

9010 * Western Taïga
PAL.CLASS.: 41.B8, 41.C3, 41.D5, 42.C

20 For forest habitat types the following additional criteria were accepted by the Scientific Working Group (21-22 June 1993):
- forests of native species;
- forests with a high degree of naturalness;
- forests of tall trees and high forest;
- presence of old and dead trees;
- forests with a substantial area;
- forests having benefited from continuous sustainable management over a significant period.
1) Natural old forests as well as those young forest stages naturally developing after fire. Natural old forests represent climax or late succession stages with slight human impact or without any human impact. Present natural old forests are only minor remnants of those originally occurring in Fennoscandia. With intensive forestry, which is carried out practically throughout this region, the main features of natural old forests disappear, i.e. the considerable amount of dead and rotten wood, the great variation in tree age and length and species composition, the trees from previous generations, the more stable microclimate. Old natural forests are habitats of many threatened species, especially bryophytes, lichens, fungi, and invertebrates (mostly beetles). Some of the present old natural forests have human impact, but in spite of that they maintain many characteristics of the natural forests.

Because of the important role of fire, burned forest areas, and their young succession stages, have been naturally common in the boreal region. Nowadays they are extremely rare because of efficient fire protection and forestry. Natural recently burned forest areas are very important habitats for many endangered species. Typical of natural burned areas is a great amount of dead burned wood and a varying density of living trees which greatly conditions the regeneration of the forest.

The character of the forests vary with the different boreal zones (hemi-, southern, middle, northern) and different site types.

The following sub-types are distinguished, according to the main tree species and site type variation:
- natural old spruce forests
- natural old pine forests
- natural old mixed forests
- natural old deciduous forests
- recently burnt areas
- younger forests naturally developed after fire

Originally natural old forests were found in the whole boreal and hemiboreal zones, except in the oro-hemiarctic treeless zone. In Finland nowadays most of the natural old forests are found in eastern and northern parts, in southern and western parts of the country only remnants of these forests remain. In Sweden most of the old natural forests are in the north and only some of them in the south.

9020 * Fennoscandian hemiboreal natural old broad-leaved deciduous forests (Quercus, Tilia, Acer, Fraxinus or Ulmus) rich in epiphytes

PAL.CLASS.: 41.4151, 41.F2 (1997 version)

1) The hemiboreal natural old broad-leaved deciduous forest forms a transition between the Western Taiga and the nemoral forests. The most common tree species are Quercus robur, Ulmus spp., Fraxinus excelsior, Tilia cordata or Acer platanoides. There is typically a considerable amount of dead wood and a long continuity of woodland cover on the sites. The species-diversity of lichens, fungi, insects and soil-organisms is high. In many cases the forests have previously been used for grazing or mowing.

2) Plants: Allium ursinum, Anemone nemorosa, Corylus avellana, Dentaria bulbifera, Hepatica nobilis, Lathyrus vernus, Mercurialis perennis, Millium effusum, Poa nemoralis, Polygonatum multiflorum; Bryophytes- Antitrichia curtipendula, Homalia trichomanoides, Orthotrichum spp., Porella platyphylla, Zygodon spp.; Fungi- Auricularia mesenterica, Ganoderma lipsiense, Eichomitus campestris, Mycena galericulata, Tricholoma album, T. sulphureum; Lichens- Arthonia vinosa, Biatorella monasteriensis, Clotothrix corrugatum, Gynelecta flotowi, Lobaria pulmonaria, Phlyctis agelaea

3) Corresponding categories

9030 * Natural forests of primary succession stages of land upheaval coast

PAL.CLASS.: 31.8, 41.B8, 41.C3, 44.2 (1997 version)

1) This type includes different types of deciduous, coniferous and mixed natural thickets and forests developed on land upheaval coasts of the Baltic sea. Characteristic for these habitats are stages of primary succession from shore grassland vegetation to climax forests or various wetland types. Also soil horizons are poorly developed, although podsol soils are otherwise typical for boreal forest. The youngest pioneer forests near the sea are often low or tall herb deciduous forests, thickets or swamps. Vegetation succession can also proceed from willow swamps through forest swamps to mires. Alder and birch are dominant in the tree layer and willows are often common in

Interpretation Manual - EUR28 Page 103
the shrub layer. Grasses are abundant. Further inland the influence of the sea is weakened, the soils are often poor in nutrients and coniferous forests are typical. Pine, and often also spruce, dominates the tree layer and dwarf shrubs dominate in the field layer. In the ground layer mosses are common, but in many areas lichens are abundant.

3) Corresponding categories
Nordic classification: “2215 Betula pendula-Vaccinium myrtillus-Deschampsia flexuosa –type”, “2216 Betula pubescens-Molina caerulea-Sphagnum spp. –type”, coastal variants, “7213 Hippophaë rhamnoides-type”. Many other units have unclassified and undescribed variants occurring in land upheaval areas.

9040 Nordic subalpine/subarctic forests with *Betula pubescens* ssp. *czerepanovii*

1) Forests dominated by *Betula pubescens* ssp. *czerepanovii* (mountain birch), occurring and often dominating the subalpine belt of the Scandinavian mountain (fell) chain ("Fjällen"). Occur also in isolated northern Fennoscandian fells and in gently sloping or flat subarctic (hemiarctic) uplands, particularly in N Finland. Due to different ecological characteristics, vegetation varies from lichen poor and dwarf shrub dominated types to those rich-in-tall-herbs.

2) Plants: Poor types; *Cladonia* spp., *Dicranum* spp., *Empetrum hermaphroditum*, *Hylocomium splendens*, *Linnea borealis*, *Pleurozium schreberi*, *Stereocaulon paschale*, *Trientalis europaea*, *Vaccinium myrtillus*; Rich types; *Aconitum lycoctonum*, *Cicerbita alpina*, *Cornus suecica*, *Geranium sylvaticum*, *Gymnocarpium dryopteris*, *Hierochloë odorata*, *Melica nutans*, *Rubus saxatilis*, *Trollius europaeus*

3) Corresponding categories

9050 Fennoscandian herb-rich forests with *Picea abies*
PAL.CLASS.: 42.C22, 42.C4, 42.C3 (1997 version)
1) This type occurs in areas of brown forest soils with mull, often in low-lying areas, ravines and slopes with fine sediment and a favourable water regime. The succession of this vegetation type normally leads to the dominance of spruce in the tree layer, although the broad-leaved trees often comprise a significant element. Tall herbs and ferns dominate, but the species composition varies greatly between northern, southern and western Fennoscandia. The forests are characterized by distinct layers of vegetation. The bottom layer is covered unevenly by bryophytes, the field layer is dominated by herbs and grasses, the bush and tree layers are well developed including a variety of species. Several vegetation types have been described, the main groups being dry, mesic and moist grass-forest herbs. Sometimes ground water is flowing near the ground surface, which give rise to a specific species rich "wet-forest" flora and invertebrate fauna.

3) Corresponding categories

9060 Coniferous forests on, or connected to, glaciofluvial eskers
PAL.CLASS.: -

1) This type includes Fennoscandian conifer forests found on or close to eskers. The top of an esker is often characterized by Pinus sylvestris and the slopes sometimes by Picea abies, although deciduous species may occur. Eskers are glaciofluvial gravel and sand formations which consist of relatively sorted material, often forming ridges over 20 meters high. In terms of ecological site factors they are more variable than the surrounding forest on flatter ground. In particular the microclimate differs notably between shaded and sunny slopes. Thus aspect and slope inclination, which reflect the effects of solar radiation and soil and air temperatures are important ecological factors. As a result of ecological characteristics, vegetation on sunny esker slopes is often relatively rich in species and particularly contains many leguminous plants as well as some eastern steppe plant species.

2) Plants: Antennaria dioeca, Anthyllis vulneraria subsp. fennica, Astragalus alpinus, Brachypodium pinnatum, Calamagrostis arundinacea, Carex ericetorum, C. pediformis, Dianthus arenarius, Fragaria vesca, Hierochloë australis, Hypochoeris maculata, Juniperus communis, Lathyrus niger, L. vernus, Melica nutans, Oxytropis campestris, Pinus sylvestris, Polygonatum odoratum, Pulsatilla patens, P. vernalis, Pteridium aquilinum, Rubus saxatilis, Silene nutans, Thymus serpyllum, Vaccinium vitis-idaea and Viola rupestris subsp. rupestris.

3) Corresponding categories
4) Stands of esker forests on sunny slopes are often characterized by a relatively open tree structure and in addition the undergrowth often consists of species of warmer climate (e.g. Carex pediformis, Pulsatilla patens, P. vernalis, Gypsophila fastigiata) and some endangered butterfly species. About six different forest site types of eskers have been described, representing a gradient from xeric lichen rich forests to humid herb-rich forests.

9070 Fennoscandian wooded pastures

PAL.CLASS.: -

1) A vegetation complex in which the tree layer varies from sparse forest to small copses of trees and shrubs and patches of open grassland. These habitats have a representative mosaic of copses of trees (usually deciduous trees) and grassland with a long continuity of grazing. The tree layer consists either of deciduous broad-leaved species such as Quercus robur, Fraxinus excelsior, Tilia cordata, Betula spp., Alnus incana or conifers (Picea abies, Pinus sylvestris). Particularly in Sweden there are pastures with old, large oaks. A rich assemblage of threatened lichens, fungi, and invertebrates are associated with the bark and dead or decaying wood. The type also includes (particularly in Finland) deciduous forests established after slash-and-burn cultivation, that was a characteristic feature of the former land use in Finland. In Finland scattered in the whole of the country, mostly in Southern and Central Finland; very rare or extinct in northern boreal zone. In Sweden scattered over the whole country. Regional variation is considerable. Wooded pastures are usually dominated by birch, pine, alder (Alnus incana) or spruce (spruce-dominated are often degraded types); in hemiboreal zone there are also subtypes dominated by e.g. Quercus, Fraxinus and Corylus.

2) Plants: Agrostis capillaris, Alnus incana, Antennaria dioica, Botrychium spp., Campanula persicifolia, Coeloglossum viride, Fragaria vesca, Geranium sylvaticum, Melampyrum cristatum, Prunella vulgaris, Ranunculus polyanthemos, Succisa pratensis, Veronica chamaedrys, V. officinalis.

4) During recent decades the tree layer of wooded pastures has in many cases become thicker and the typical structure has then been obscured. In wooded pastures vegetation is dominated by grassland species with elements of grassland vegetation.

9080 *Fennoscandian deciduous swamp woods

PAL.CLASS.: 44.9112, 44.915, 44.A14 (1997 version)

1) Deciduous swamps are under permanent influence of surface water and usually flooded annually. They are moist or wet, wooded wetlands with some peat formation, but the peat layer is usually
very thin. Ash (*Fraxinus excelsior*) in the hemiboreal zone and black alder (*Alnus glutinosa*) reaching the middle boreal zone are typical tree species. Gray alder (*Alnus incana*), silver birch (*Betula pubescens*) and willows (*Salix* spp.) are also common. A mosaic of patches with different water level and vegetation is typical for the type. Around the tree stems are small hummocks, but wet flooded surfaces are dominant.

Deciduous swamp woods are most common in Finland in the southwestern archipelago and other coastal areas. On the mainland they are rare. In Sweden they are common throughout the whole region.

2) **Plants**: *Carex caespitosa, C. diandra, C. disperma, C. elongata, C. loliiacea, C. rhynchospora, C. tenuiflora, Calamagrostis canescens, C. chalybea, C. stricta, Calla palustris, Glyceria lithuanica, Iris pseudacorus, Lycopodium europaeus, Lysimachia thyrsiflora, Lythrum salicaria, Solanum dulcamara, Thelypteris palustris; Mosses- Calliergon cordifolium, Helodium blandowii, Pseudobryum cincidioides, Spagnum squarrosum, S. teres, S. fimbriatum, S. riparium*

3) **Corresponding categories**

4) Associated with the habitat type: Residual alluvial forests (91E0)

Forests of temperate Europe

9110

Luzulo-Fagetum beech forests

PALCLASS.: 41.11

1) *Fagus sylvatica* and, in higher mountains, *Fagus sylvatica-Abies alba* or *Fagus sylvatica-Abies alba-Picea abies* forests developed on acidic soils of the medio-European domain of central and northern Central Europe, with *Luzula luzuloides, Polytrichum formosum* and often *Deschampsia flexuosa, Calamagrostis villosa, Vaccinium myrtillus, Pteridium aquilinum*.

The following sub-types are included:

41.111 Medio-European collin woodrush beech forests

Acidophilous *Fagus sylvatica* forests of the lesser Hercynian ranges and Lorraine, of the collin level of the greater Hercynian ranges, the Jura and the Alpine periphery, of the western sub-Pannonic and the intra-Pannonic hills, not or little accompanied by self sown conifers, and generally with an admixture of *Quercus petraea*, or in some cases *Quercus robur*, in the canopy.

41.112 Medio-European montane woodrush beech forests

Acidophilous forests of *Fagus sylvatica, Fagus sylvatica* and *Abies alba* or *Fagus sylvatica, Abies alba* and *Picea abies* of the montane and high-montane levels of the greater Hercynian ranges, from the Vosges and the Black Forest to the Bohemian Quadrangle, the Jura, the Alps, the Carpathians and the Bavarian Plateau.

2) **Plants**: *Fagus sylvatica, Abies alba, Picea abies, Luzula luzuloides, Polytrichum formosum* and often *Deschampsia flexuosa, Calamagrostis villosa, Vaccinium myrtillus, Pteridium aquilinum*.
3) **Corresponding categories**
Nordic classification: "2221 Fagus sylvatica-Deschampsia flexuosa-Vaccinium myrtillus-typ"

9120

**Atlantic acidophilous beech forests with *Ilex* and
sometimes also *Taxus* in the shrublayer (**Quercinion robori-petraeae** or **Ilci-Fagenion**)**

PAL.CLASS.: 41.12

1) Beech forests with *Ilex*, growing on acid soils, of the plain to montane levels under humid Atlantic climate. The acid substrate corresponds to alterations of acid rocks or to silt with flints more or less degraded or, to old alluvial deposits. The soils are of acid brown type, leaching or with an evolution towards podsol type. The humus is of moder to dysmoder type. These beech forests present different varieties:

 a) subatlantic beech-oak forests of the plains and hill levels with *Ilex aquifolium*
 b) hyper-Atlantic beech-oak forests of the plains and hill levels with *Ilex* and *Taxus*, rich in epiphytes
 c) pure beech forests or acidophilous beech-fir forests of the montane level, with *Ilex aquifolium* in the field layer.

2) **Plants:** *Ilex aquifolium*, *Taxus baccata*, *Ruscus aculeatus*, *Deschampsia flexuosa*, *Hieracium sabaudum*, *H. umbellatum*, *Pteridium aquilinum*, *Vaccinium myrtillus*, *Lonicera periclymenum*, *Melampyrum pratense*, *Teucrium scorodonia*, *Holcus mollis*.

3) **Corresponding categories**
United Kingdom classification: "W14 Fagus sylvatica-Rubus fruticosus woodland" pp and "W15 Fagus sylvatica-Deschampsia flexuosa woodland p.p.".

 German classification: "43070502 bodensaurer Buchenwald der planaren Stufe".

4) Oak may dominate in some of these forests due to the coppice-with-standards regime of the past centuries. If the intensity of the management decreases beech and also *Ilex* often regenerate spontaneously.

9130

Asperulo-Fagetum beech forests

PAL.CLASS.: 41.13

1) *Fagus sylvatica* and, in higher mountains, *Fagus sylvatica-Abies alba* or *Fagus sylvatica-Abies alba-Picea abies* forests developed on neutral or near-neutral soils, with mild humus (mull), of the medio-European and Atlantic domains of Western Europe and of central and northern Central Europe, characterised by a strong representation of species belonging to the ecological groups of *Anemone nemorosa*, of *Lamiastrum (Lamium) galeobdolon*, of *Galium odoratum* and *Melica uniflora* and, in mountains, various *Dentaria* spp., forming a richer and more abundant herb layer than in the forests of 9110 and 9120.

 Sub-types:
 41.131 - Medio-European collinar neutrophilous beech forests
Neutrocline or basicline *Fagus sylvatica* and *Fagus sylvatica-Quercus petraea-Quercus robur* forests of hills, low mountains and plateaux of the Hercynian arc and its peripheral regions, of the Jura, Lorraine, the Paris basin, Burgundy, the Alpine piedmont, the Carpathians and a few localities of the North-Sea-Baltic plain.

41.132 - Atlantic neutrophile beech forests
Atlantic beech and beech-oak forests with *Hyacinthoides non-scripta*, of southern England, the Boulonnais, Picardy, the Oise, Lys and Schelde basins.

41.133 - Medio-European montane neutrophilous beech forests
Neutrophilous forests of *Fagus sylvatica*, *Fagus sylvatica* and *Abies alba*, *Fagus sylvatica*, *Abies alba* and *Picea abies* of the montane and high-montane levels of the Jura, the northern and eastern Alps, the western Carpathians and the great Hercynian ranges.

41.134 - Bohemian lime-beech forests
Fagus sylvatica or *Fagus sylvatica-Abies alba* forests rich in *Tilia* spp., of the Bohemian basin.

41.135 - Pannonic neutrophilme beech forests
Neutrophilous beech forests of medio-European affinities of the hills of the Pannonic plain and its western periphery.

2) **Plants:** *Fagus sylvatica*, *Abies alba*, *Picea abies*, *Anemone nemorosa*, *Lamiastrum* (*Lamium*) *galeobdolon*, *Galium odoratum*, *Melica uniflora*, *Dentaria* spp.

3) **Corresponding categories**
- Nordic classification: "2222 *Fagus sylvatica-Lamiastrum galeobdolon-Melica uniflora*-typ" and "2223 *Fagus sylvatica-Mercurialis perennis-Allium ursinum*-typ".
- Romanian classification: "R4118 Păduri dacice de fag (*Fagus sylvatica*) şi carpen (*Carpinus betulus*) cu *Dentaria bulbifera*", "R4119 Păduri dacice de fag (*Fagus sylvatica*) şi carpen (*Carpinus betulus*) cu Carex pilosa","R4120 Păduri moldave mixte de fag (*Fagus sylvatica*) şi tei argintiu (*Tilia tomentosa*) cu Carex brevicollis"

4) Relict stands of collinar neutrophilous beech forests of the Macin Mountains of Dobrogea, Romania are the priority habitat 91X0*Dobrogean Beech forests

9140 Medio-European subalpine beech woods with *Acer* and *Rumex arifolius*

PAL.CLASS.: 41.15

1) *Fagus sylvatica* woods usually composed of low, low-branching trees, with much sycamore (*Acer pseudoplatanus*), situated near the tree limit, mostly in low mountains with oceanic climate of Western Europe and of central and northern Central Europe. The herb layer is similar to that of the forests of 9130 or locally of 9110 and contain elements of the adjacent open grasslands.

2) **Plants:** *Fagus sylvatica*, *Acer pseudoplatanus*, *Rumex arifolius* (syn *R. alpestris*).
9150 Medio-European limestone beech forests of the Cephalanthero-Fagion

PAL.CLASS.: 41.16

1) Xero-thermophile *Fagus sylvatica* forests developed on calcareous, often superficial, soils, usually of steep slopes, of the medio-European and Atlantic domaines of Western Europe and of central and northern Central Europe, with a generally abundant herb and shrub undergrowth, characterized by sedges (*Carex digitata*, *Carex flacca*, *Carex montana*, *Carex alba*), grasses (*Sesleria albicans*, *Brachypodium pinnatum*), orchids (*Cephalanthera* spp., *Neottia nidus-avis*, *Epipactis leptochila*, *Epipactis microphylla*) and thermophile species, transgressive of the *Quercetalia pubescenti-petraeae*. The bush-layer includes several calcicolous species (*Ligustrum vulgare*, *Berberis vulgaris*) and *Buxus sempervirens* can dominate.

Sub-types:

41.161 - Middle European dry-slope limestone beech forests

Middle European sedge and orchid beech woods of slopes with reduced water availability.

41.162 - North-western Iberian xerophile beech woods

Fagus sylvatica forests of relatively low precipitation zones of the southern ranges of the Pais Vasco and of superficially dry calcareous soils of the Cordillera Cantabrica, with *Brachypodium pinnatum* ssp. *rupestre*, *Sesleria argentea* ssp. *hispanica*, *Carex brevicollis*, *Carex ornithopoda*, *Carex sempervirens*, *Carex caudata*, *Cephalanthera damassonium*, *C. longifolia*, *Epipactis helleborine*, *Epipactis microphylla*, *Neottia nidus-avis*.

2) **Plants:** *Fagus sylvatica*, *Carex digitata*, *C. flacca*, *C. montana*, *C. alba*, *Sesleria albicans*, *Brachypodium pinnatum*, *Cephalanthera* spp., *Neottia nidus-avis*, *Epipactis leptochila*, *Epipactis microphylla*, *Buxus sempervirens*.

3) **Corresponding categories**

Nordic classification: "2223 *Fagus sylvatica*-Mercurialis perennis-Allium ursinum -typ".

Romanian classification "R4111 Păduri sud-est carpatice de fag (*Fagus sylvatica*) și brad (*Abies alba*) cu *Cephalanthera damassonium".

9160 Sub-Atlantic and medio-European oak or oak-hornbeam forests of the Carpinion betuli

PAL.CLASS.: 41.24

1) Forests of *Quercus robur* (or *Quercus robur* and *Quercus petraea*) on hydromorphic soils or soils with high water table (bottoms of valleys, depressions or in the vicinity of riparian forests). The substrate corresponds to silts, clayey and silt-laden colluvions, as well as to silt-laden alterations or to siliceous rocks with a high degree of saturation. Forests of *Quercus robur* or natural mixed forests composed of *Quercus robur*, *Quercus petraea*, *Carpinus betulus* and *Tilia cordata*. *Endymion non-scriptus* is absent or rare.

2) **Plants:** *Quercus robur*, *Carpinus betulus*, *Acer campestre*, *Tilia cordata*, *Stellaria holostea*, *Carex brizoides*, *Poa chaixii*, *Potentilla sterilis*, *Dactylis polygama*, *Ranunculus nemorosus*, *Galium sylvaticum*.

3) **Corresponding categories**

German classification: "430703 Stieleichen-Hainbuchenwald feuchter bis frischer Standorte".

Nordic classification: "2223 *Fagus sylvatica*-Mercurialis perennis-Allium ursinum-typ".
4) Not to be confused with forests of *Quercus robur* arising from the management of beech-oak forests as coppice or coppice-with-standards on well drained soils.

9170 *Galio-Carpinetum* oak-hornbeam forests

PAL.CLASS.: 41.261, 41.262

1) *Quercus petraea-Carpinus betulus* forests of regions with sub-continental climate within the central European range of *Fagus sylvatica*, dominated by *Quercus petraea* (41.261). Also included are related lime-oak forests of eastern and eastern-central European regions with a continental climate, east of the range of *F. sylvatica* (41.262).

2) **Plants:** 41.261 - *Quercus petraea*, *Carpinus betulus*, *Sorbus torminalis*, *S. domestica*, *Acer campestre*, *Ligustrum vulgare*, *Convallaria majalis*, *Carex montana*, *C. umbrosa*, *Festuca heterophylla*; 41.262 - *Quercus petraea*, *Quercus robur*, *Tilia cordata*, *Acer platanoides*, *Carpinus betulus*.

3) **Corresponding category**

Nordic classification: "2224 *Carpinus betulus*-typ".

9180 *Tilio-Acerion* forests of slopes, screes and ravines

PAL.CLASS.: 41.4

1) Mixed forests of secondary species (*Acer pseudoplatanus*, *Fraxinus excelsior*, *Ulmus glabra*, *Tilia cordata*) of coarse scree, abrupt rocky slopes or coarse colluvions of slopes, particularly on calcareous, but also on siliceous, substrates (*Tilio-Acerion* Klika 55). A distinction can be made between one grouping which is typical of cool and humid environments (hygroscopic and shade tolerant forests), generally dominated by the sycamore maple (*Acer pseudoplatanus*) - sub-alliance *Lunario-Acerenion*, and another which is typical of dry, warm screes (xerothermophile forests), generally dominated by limes (*Tilia cordata*, *T. platyphyllos*) - sub-alliance *Tilio-Acerenion*. The habitat types belonging to the *Carpinion* should not be included here.

2) **Plants:** *Lunario-Acerenion* - *Acer pseudoplatanus*, *Actaea spicata*, *Fraxinus excelsior*, *Helleborus viridis*, *Lunaria rediviva*, *Taxus baccata*, *Ulmus glabra*, *Tilio-Acerenion* - *Carpinus betulus*, *Corylus avellana*, *Quercus sp.*, *Sesleria varia*, *Tilia cordata*, *T. platyphyllos*.

3) **Corresponding categories**

Nordic classification: "2233 *Ulmus glabra*-typ", "2235 *Tilia cordata*-typ" and "2236 *Quercus robur-Ulmus glabra-Tilia cordata*-typ". In Boreal region corresponding species-poor communities often with *Anemone nemorosa*, *Corydalis* spp., *Primula veris*.
4) Slight changes in the conditions of the substrate (especially "consolidated" substrate) or humidity produce a transition towards beech forests (Cephalanthero-Fagenion, Luzulo-Fagenion) or towards thermophile oak forests.

9190

Old acidophilous oak woods with *Quercus robur* on sandy plains

PAL.CLASS.: 41.51 and 41.54

1) 41.51 - Acidophilous forests of the Baltic-North Sea plain, composed of *Quercus robur*, *Betula pendula* and *Betula pubescens*, often mixed with *Sorbus aucuparia* and *Populus tremula*, on very oligotrophic, often sandy (or moraine) and podsolized or hydromorphic soils; the bush layer, poorly developed, includes *Frangula alnus*; the herb layer is formed by *Deschampsia flexuosa* and other grasses and herbs of acid soils (sometimes includes *Molinia caerulea*), and is often invaded by bracken. Forests of this type often prevail in the northern European plain and occupy more limited edaphic enclaves. Syntaxa: *Querco-Betuletum*, *Molino-Quercetum*, *Trientalo-Quercetum*.

41.54 - Forests of *Quercus robur* and, sporadically *Quercus pyrenaica* or hybrids, on podzols, with a herb layer formed by the group of *Deschampsia flexuosa*, with *Molinia caerulea* and *Peucedanum gallicum*. Syntaxa: *Peucedano-Quercetum roboris*.

2) **Plants:** *Quercus robur*, *Betula pendula*, *B. pubescens*, *Sorbus aucuparia*, *Populus tremula*.

3) **Corresponding categories**

Nordic classification: "2231 *Quercus petraea*/robur-Melampyrum pratense-Deschampsia flexuosa-typ" and "2232 *Quercus robur*-Melica spp.-typ".

91A0

Old sessile oak woods with *Ilex* and *Blechnum in the British Isles

PAL.CLASS.: 41.53

1) Acidophilous *Quercus petraea* woods, with low, low-branched, trees, with many ferns, mosses, lichens and evergreen bushes.

Sub-types:

41.531 - Irish sessile oak woods

Quercus petraea woods of Ireland, particularly rich in evergreen bushes, including *Arbutus unedo*.

41.532 - British sessile oak woods

Acidophilous *Quercus petraea* woods of western Britain, mostly found in Scotland, Wales, Northern England and South Western England.

2) **Plants:** *Quercus petraea*, *Ilex aquifolium*, *Blechnum ssp.*

3) **Corresponding categories**

91B0 **Thermophilous Fraxinus angustifolia woods**

PAL.CLASS.: 41.86

1) Non-alluvial, non-ravine formations dominated by *Fraxinus angustifolia*, often mixed with *Quercus pubescens* or *Q. pyrenaica*.

 Sub-types:
 - 41.861 - Sicilian narrow-leaved ash woods
 Fraxinus angustifolia woods of western Sicily.
 - 41.862 - Iberian narrow-leaved ash woods
 Fraxinus angustifolia woods of the Iberian peninsula.

2) **Plants:** *Fraxinus angustifolia*.

91C0 **Caledonian forest**

PAL.CLASS.: 42.51

1) Relict, indigenous pine forests of *Pinus sylvestris* var. *scotica*, endemic in the central and north-eastern Grampians and the northern and western Highlands of Scotland and associated *Betula* and *Juniperus* woodlands of northern character within this area. They are mostly open and have a ground layer rich in ericaceous species and bryophytes, in particular *Hylocomium splendens*, and often harbouring abundant *Deschampsia flexuosa*, *Goodyera repens*, *Listera cordata*, *Corallorhiza trifida*, *Linnaea borealis*, *Trientalis europaea*, *Pyrola minor*, *Moneses uniflora*, *Orthilia secunda*. The dominant trees are: *Sorbus aucuparia*, *Betula pubescens*, *B. pendula*, *Juniperus communis*, *Ilex aquifolium*, *Populus tremula*.

2) **Plants:** *Corallorhiza trifida*, *Deschampsia flexuosa*, *Goodyera repens*, *Linnaea borealis*, *Listera cordata*, *Moneses uniflora*, *Orthilia secunda*, *Pinus sylvestris* var. *scotica*, *Pyrola minor*, *Trientalis europaea*. Bryophytes: *Hylocomium splendens*, *Pleurozium schreberi*.

3) **Corresponding categories**

United Kingdom classification: the majority of Caledonian forests belong to "W18 Pinus sylvestris-Hylocomium splendens woodland"; however, not all of these forests are semi-natural. Stands dominated by *Juniperus* belong to the category "W19 Juniperus communis ssp. communis-Oxalis acetosella woodland".

91D0 **Bog woodland**

PAL.CLASS.: 44.A1 to 44.A4

1) Coniferous and broad-leaved forests on a humid to wet peaty substrate, with the water level permanently high and even higher than the surrounding water table. The water is always very poor in nutrients (raised bogs and acid fens). These communities are generally dominated by *Betula pubescens*, *Frangula alnus*, *Pinus sylvestris*, *Pinus rotundata* and *Picea abies*, with species specific to bogland or, more generally, to oligotrophic environments, such as *Vaccinium* spp., *Sphagnum* spp.,
Carex spp. [Vaccinio-Piceetea: Piceo-Vaccinienion uliginosi (Betulion pubescents, Ledo-Pinion) i.a.]. In the Boreal region, also spruce swamp woods, which are minerotrophic mire sites along margins of different mire complexes, as well as in separate strips in valleys and along brooks.

Sub-types:
- 44.A1 - Sphagnum birch woods
- 44.A2 - Scots pine mire woods
- 44.A3 - Mountain pine bog woods
- 44.A4 - Mire spruce woods

2) **Plants:** Agrostis canina, Betula pubescens, B. carpatica, Carex canescens, C. echinata, C. nigra, C. rostrata, Eríphorium vaginatum, Frangula alni, Juncus acutiflorus, Molinia caerulea, Tíentalis europaea, Picea abies, Pinus rotundata, P. sylvestris, P. mugo, Sphagnum spp., Vaccinium oxycoccus, V. uliginosum, Viola palustris; in spruce swamp woods also: Carex dispermá, C. tenuiflora, Diplazium sibiricum, Hylocomium umbránum and Rhytidiadelphus triquetru.

3) **Corresponding categories**
United Kingdom classification: "W4 Betula pubescens-Molinia caerulea woodland".
Nordic classification: "311 Skogsmossevegetation", "321 Skogs-och krattkärrevegetation".
Romanian classification: “R3106 Tufărişuri sud-est Carpaţe de jneapăn (Pinus Mugo) în mlaştini oligotrofe de Sphagnum”, “R4412 Raristi sud-est carpaţie de molid (Picea abies) si/sau pin silvestru (Pinus sylvestris) de tinoave”, “R4414 Tufărişuri sud-est carpaţie de mlaştini de mesteacăn pufos (Betula pubescens)".

4) Forests on the edge of upland bogs or transition mires may form a transition towards swamp forests (Alnetea glutinosa, Alno-Ulmo pp.).
Where bog woodland has colonized former non-woodland bog because of human impacts (bog degradation), the bog woodland may be removed in order to restore favourable conservation status of the former bog (types 7110, 7130 and 7140). Such secondary bog woodland is included in the definition of type 91D0, but generally has lower conservation priority than restoration of the original bog type.

Alluvial forests with *Alnus glutinosa* and *Fraxinus excelsior* (Alno-Padion, Alnion incanae, Salicion albae)

PAL.CLASS.: 44.3, 44.2 and 44.13

1) Riparian forests of *Fraxinus excelsior* and *Alnus glutinosa*, of temperate and Boreal Europe lowland and hill watercourses (44.3: Alno-Padion); riparian woods of *Alnus incanae* of montane and sub-montane rivers of the Alps and the northern Apennines (44.2: Alnion incanae); arborescent galleries of tall *Salix alba*, *S. fragilis* and *Populus nigra*, along medio-European lowland, hill or sub-montane rivers (44.13: Salicion albae). All types occur on heavy soils (generally rich in alluvial deposits) periodically inundated by the annual rise of the river (or brook) level, but otherwise well-drained and aerated during low-water. The herbaceous layer invariably includes many large species (*Filipendula ulmaria*, *Angelica sylvestris*, *Cardamine spp.*, *Rumex sanguineus*, *Carex spp.*, *Cirsium oleraceum*) and various vernal geophytes can occur, such as *Ranunculus ficaria*, *Anemone nemorosa*, *A. ranunculoides*, *Corydalis solida*.

This habitat includes several sub-types: ash-alder woods of springs and their rivers (44.31 - Carici remotae-Fraxinetum); ash-alder woods of fast-flowing rivers (44.32 - Stellario-Alnetum glutinosae); ash-alder woods of slow-flowing rivers (44.33 - Pruno-Fraxinetum, Ulmo-Fraxinetum); montane grey alder galleries (44.21 - Calamagrosti variae-Alnetum incanae Moor 58); sub-montane grey alder galleries (44.22 - Equiseto hyemalis-Alnetum incanae Moor 58); white willow gallery forests (44.13 - Salicion albae). The Spanish types belong to the alliance Osmundo-Alnion (Cantabric atlantic and southeast Iberia peninsula).

3) Corresponding categories

United Kingdom classification: "W5 Alnus glutinosa-Carex paniculata woodland", "W6 Alnus glutinosa-Urtica dioica woodland" and "W7 Alnus glutinosa-Fraxinus excelsior-Lysimachia nemorum woodland".

German classification: "43040401 Weichholzauenwald mit weitgehend ungerörter Überflutungsdynamik", "43040402 Weichholzauenwald ohne Überflutung", "430403 Schwarzerlenwald (an Fließgewässern)", "430402 Eschenwald (an Fließgewässern)", "430401 Grauenerlenwald (montan, Alpenvorland, Alpen)."

Nordic classification: "2234 Fraxinus excelsior-typ" and "224 Alskgog".

4) Most of these forests are in contact with humid meadows or ravine forests (*Tilio-Acerion*). A succession towards *Carpinion* (*Primulo-Carpinetum*) can be observed.

91F0 Riparian mixed forests of *Quercus robur*, *Ulmus laevis* and *Ulmus minor*, *Fraxinus excelsior* or *Fraxinus angustifolia*, along the great rivers (*Ulmenion minoris*)

PAL.CLASS.: 44.4

1) Forests of hardwood trees of the major part of the river bed, liable to flooding during regular rising of water level or, of low areas liable to flooding following the raising of the water table. These forests develop on recent alluvial deposits. The soil may be well drained between inundations or remain wet. Following the hydric regime, the woody dominated species belong to *Fraxinus*, *Ulmus* or *Quercus* genus. The undergrowth is well developed.

3) **Corresponding categories**
 - German classification: "43040501 Hartholzauenwald mit weitgehend ungestörter Überflutungsdynamik”, "43040502 Hartholzauenwald ohne Überflutung”.
 - Nordic classification: "2223 Ulmus glabra-typ", "2236 Quercus robur-Ulmus glabra-Tilia cordata typ".

4) These forests form mosaics with pioneer or stable forests of soft wood trees, in low areas of the river bed; they may develop also from alluvial forests of hard wood trees. This habitat type often occurs in conjunction with alder-ash woodlands (44.3).

91G0 *Pannonic woods with Quercus petraea and Carpinus betulus*

PAL.CLASS.: 41.2B, 41.266, 41.267

1) Forests with *Quercus petraea* and *Carpinus betulus* of the plains and low hills of south eastern central Europe on varied soil types (both calcareous and siliceous substrates). The shrub- and herb layer are dominated by subcontinental and submediterranean plant species. They occur in shady, humid valleys and slopes, particularly on deep soils but also on hill tops with shallow, oligotrophic substrates. Syntaxa include, *Primulo veris-Carpinetum*, *Fraxino pannonici-Carpinetum*.

2) **Plants:** *Carex pilosa*, *Euphorbia amigdaloides*, *Symphytum tuberosum*, *Dentaria bulbifera*, *Glechoma hirsuta*, *Festuca heterophylla*, *Carpinus betulus*, *Quercus petraeae*, *Q. robur*, *Tilia cordata*, *Euonymus verrucosa*, *Acer campestrae*, *Sorbus torminalis*, *Galium sylvaticum*, *Viola mirabilis*, *Gagea spathacea*, *Acet tataricum*, *Galanthus nivalis*, *Galium schultesii*, *Helleborus dumetorum*, *H. purpurascens*, *Isopyrum thalictroideae*, *Knautia drymeia*, *Quercus cerris*, *Scilla drunensis*, *Staphylea pinnata*, *Symphytum tuberosum*, *Vinca minor*.

4) These habitats may form a transition towards xerophile oak woods (*Quercus petraeae-cerris forests* and *Quercus pubescens* woods).

91H0 * Pannonian woods with *Quercus pubescens*

PAL.CLASS.: 41.7373, 41.7374

1) Xerophyte oak woods of the periphery and hills of the Pannonic plain dominated by *Quercus pubescens* on extremely dry, southern exposed locations on shallow, calcareous soils. Because of these extreme site conditions, the woods are often fragmentary and low-growing, sometimes only shrubby. The herb layer is rich in species and often contains xerothermic species from dry grasslands or forest fringes. Occasionally *Tilia platyphyllos* and *Fraxinus excelsior* can become dominant.

3) *Quercus virgiliana*, *Cotinus coggyria*, *Amygdalus nana*, *Cornus mas*, *Astragalus austriacus*, *A. monspessulanus*, *Carex humilis*, *Dictamnus albus*, *Geranium sanguineum*.

4) White-oak woods often form mosaics with dry grasslands.

9110 * Euro-Siberian steppic woods with *Quercus* spp.*

PAL.CLASS.: 41.7A

1) Xero-thermophile oak woods of the plains of south-eastern Europe. The climate is very continental, with a large temperature range. The substrate consists of ’Loess’ (Chernozem soils). *Quercus robur*, *Quercus cerris*, *Q. pedunculiflora* and *Quercus pubescens* dominate in the treelayer of this habitat type, which is rich in continental stepic vegetation elements and geophytes of the *Aceri tatarici-Quercion* Zólyomi 1957.

4) This habitat type, which formed the natural vegetation of south-eastern Europe, is today very fragmented. In Austria they are often degraded by invasion of *Robinia*.
91J0 * **Taxus baccata** woods of the British Isles

PAL.CLASS.: 42.A71

1) *Taxus baccata* woods with *Sorbus aria* or *Mercurialis perennis* of dry valleys and scarps of the chalk of south-east England, very locally of the Durham Magnesium limestone, Morecambe Bay and elsewhere. They also occur in the forest of Muckross (Killarney, Ireland).

2) **Plants:** *Buxus sempervirens, Ilex aquifolium, Mercurialis perennis, Sorbus aria, Taxus baccata.*

3) **Corresponding categories**
 United Kingdom classification: "W13 Taxus baccata woodland".

91K0 **Illyrian Fagus sylvatica forests (Aremonio-Fagion)**

PAL.CLASS.: 41.1C

1) *Fagus sylvatica* forests of the Dinarides and of associated ranges and hills, with outliers and irradiations in the southeastern Alps, the southwestern Carpathians and in the mid-Pannonic hills. In these areas they are in contact with, or interspersed among, medio-European beech forests such as 9130, 9140 and 9150. Species diversity is greater than in the Central European beech woods and the Aremonio-Fagion constitutes an important centre of species diversity.

2) **Plants:** *Fagus sylvatica, F. moesiaca, Acer obtusaturn, Ostrya carpinifolia, Abies alba, Quercus cerris, Sorbus graeca, Tilia tomentosa, Anemone trifolia, Aremonia agrimonioideas, Calamintha grandiflora, Cardamine trifolia, C. waldsteinii, Corylus colurna, Cotoneaster tomentosa, Cyclamen purpurascens, Dentaria eneaphyllos, Dentaria eneaphyllos, Dentaria trifolia, Doronicum austriacum, Epimedium alpinum, Euphorbia carnlicia, Hacquetia epipactis, Helleborus niger spp. niger, H. odorus, Knautia drymeia, Lamiukm orvala, Lamium orvala, Lonicera nigra, Omphalodes verna, Pancicia serbica, Primula vulgaris, R. hypoglossum, Ruscus spp. Saxifraga lasiophylla, Scopolia carnlicia, Scrophularia scopolii, Sesleria autumnalis, Vicia oroboides*

91L0 **Illyrian oak–hornbeam forests (Erythronio-Carpinion)**

PAL.CLASS.: 41.2A

1) Forests of *Quercus robur* or *Q. petraea*, sometimes *Q. cerris*, and *Carpinus betulus* on both calcareous and siliceous bedrocks, mostly on deep neutral to slightly acidic brown forest soils, with mild humus in the SE-Alpine-Dinaric region, West- and Central Balkans extending northwards to Lake Balaton mostly in hilly and submontane regions, river valleys and the plains of the Drava and Sava. The climate is more continental than in sub-Mediterranean regions and warmer than in middle Europe; these forests are intermediate between oak-hornbeam woods (e.g. 9170) of central Europe and those of the Balkans and merge northwards into the Pannonic oak woods (91G0). They have a much higher species richness than the Central European oak woods. Outliers of these forests also occur in Frioul and the northern Apennines.

2) **Plants:** *Quercus robur, Q. petraea, Q. cerris, Carpinus betulus, Acer tataricum, Tilia tomentosa, Castanea sativa, Fraxinus angustifolia subsp. pannonica, Euonymus verrucosa, Lonicera caprifolium, Adoxa moschatellina, Cyclamen purpurascens, Dentaria pentaphyllos, Epimedium alpinum, Erythronium dens-canis, Knautia drymeia, Helleborus macranthus, H. dumetorum ssp. atrorubens, H. cyclophyllus, Asperula taurina, Lathyrus venetus, Potentilla micrantha, Dianthus barbatus, Luzula forsteri, Primula vulgaris, Pseudostellaria europaea, Ruscus aculeatus, Tamus communis.*

91M0 **Pannonian-Balkanic turkey oak- sessile oak forests**

PAL.CLASS.: 41.76

1) Sub-continental thermo-xerophile *Quercus cerris, Q. petraea* or *Q. frainetto* and related deciduous oaks, locally of *Q. pedunculiflora* or *Q. virginiana* forests of the Pannonie, hills and plains of western and southern Romania, northern Balcanic hilly regions and of the supra-Mediterranean level of continental north east Greece, and of supra-Mediterranean Anatolia and in lower mountains with the continental *Acer tataricum*. Distributed generally between 250 and 600 (800) m above sea level and developed on varied substrates: limestones, andesites, basalt, loess, clay, sand, etc., on slightly acidic, usually deep brown soils.

2) **Plants:** *Quercus petraea Q. dalechampii, Q. polycarpa, Q. cerris, Q. frainetto, Acer tataricum, Carpinus orientalis, Fraxinus ornus, Tilia tomentosa, Ligustrum vulgar, Euonymus europaeus, Festuca heterophylla, Carex montana, Poa nemoralis, Potentilla alba, Potentilla micrantha, Tanacetum corymbosum, Campanula persicifolia, Digitalis grandiflora, Vicia cassubica, Viscaria vulgaris, Lychnis coronaria, Achillea distans, Achillea nobilis, Silene nutans, S. viridiflora, Hieracium racemosum, H. sabaudum, Galium chelitesii, Lathyrus niger, Veratrum nigrum, Asphodelus albus, Peucedanum oreoselinum, Helleborus odor, Luzula forsteri, Physospermum aquilegifolium, Molinia litoralis, Carex praecox, Pulmonaria mollis, Melittis melissophyllum, Glechoma hirsuta, Geum urbanum, Genista tinctoria, Lithospermum purpurocaeruleum (syn Buglossoides purpurocaerulea), Trachistemon orientale, Daphne pontica, Calluna vulgaris,
Primula acaulis ssp rubra, Epimedium pubigerum, Cyclamen coum, Nectaroscordum siculum, Galanthus plicatus.

Jordanov, D., (1939). The vegetation of the Bulgarian part of the Stranja Mts. Proceed. of Sofia Univ., Faculty of Physics and Matematics, 34.3:409-476; 35, 3:1-90. (in Bulgarian)

91N0 *Pannonic inland sand dune thicket (Junipero-Populetum albae)

PAL.CLASS.: 41.87

1) Xerophilous mosaic of open scrub or open woodlands with Juniperus communis and Populus species and open or closed sand steppe grasslands of sands, particularly sand dunes, of the Danube-Tisza confluence of the Pannonian plain. Woodland herbaceous species are lacking and the habitat in general more closely resembles semi-desert scrub than steppe woodland.

2) Plants: Populus alba, P. canescens, P. nigra, Juniperus communis, Ligustrum vulgare, Rhamnus catharticus, Crataegus monogyna, Prunus spinosa, Prunus mahaleb, Rubus caesius, Euonymus verrucosus, Berberis vulgaris., Festuca vaginata, Syntrichia spp., Fumana procumbens, Euphorbia seguieriana, Polygonatum odoratum, Poa angustifolia, Koeleria glauca, Stipa joannis, Bromus tectorum, Epipactis bugacensis, E. atrorubens, Cephalanthera rubra

91P0 Holy Cross fir forests (*Abietetum polonicum*)

PAL.CLASS.: 42.134

1) Upland fir, or fir-dominated fir-spruce or fir-pine-oak forests developed on mesotrophic acid soils of Little-Poland, in particular of the Holy Cross mountains and of sub-Carpathic hills. They are rich in ferns, bryophytes and lowland forest species shared with deciduous forests of the *Tilio-Carpinetum*.

2) **Plants**: *Abies alba*, *Fagus silvatica*, *Quercus robur*, *Quercus sessilis*, *Pinus silvestris*, *Betula verrucosa*, *Populus tremula*, *Picea excelsa*, *Alnus glutinosa*, *Sambucus racemosa*, *Rubus idaeus*, *Dryopteris austriaca*, *Athyrium filix-femina*, *Phegopteris dryopteris*, *Phegopteris polyiodoides*, *Lycopodium annotinum*, *Hylocomium splendens*, *Polytrichum formosum*, *Majanthemum bifolium*, *Rubus cfr. hirsutus*, *Galeobdolon luteum*, *Oxalis acetosella*, *Luzula pilosa*.

91Q0 Western Carpathian calcicolous *Pinus sylvestris* forests

PAL.CLASS.: 42.542, 42.5C8

1) Isolated, calcicolous *Pinus sylvestris* forests of the western Carpathians limited to a few small enclaves in the Strazov mountains, the Velka Fatra, the Pienini, the inner-Carpathian basins and the Erzgebirge. *Erica herbacea* and *Polygala chamaebuxus* are absent and the undergrowth includes a number of species of continental distribution and xerothermic affinities including western Carpathian endemics. Related communities in the eastern Carpathians (42.5C8) are also considered to be this habitat type.

3) **Corresponding categories**

Romanian classification: “R4215 Păduri sud-est carpatice de pin silvestru (*Pinus sylvestris*) cu *Sesleria rigida*”

91R0 Dinaric dolomite Scots pine forests (*Genisto januensis-Pinetum*)

PAL.CLASS.: 42.5C52

1) *Pinus sylvestris* woods of dolomites and dolomite rendzinas of the Dinarides. They are developed within the Illyrian beech forest zone (91K0) and often occupy somewhat higher elevations than the similar dolomite *Pinus nigra* woods of unit 42.6214.

2) **Plants**: *Pinus sylvestris*, *Erica herbacea*, *E. carnea*, *Galium lucidum*, *Genista januensis*, *Aquilegia vulgaris*, *Buphthalmum salicifolium*, *Teucrium chamaedrys*, *Carex humilis*, *Anthericum ramosum*, *Cyclamen purpurascens*, *Polygala chamaebuxus*, *Hepatica nobilis*, *Geranium sanguineum*, *Helleborus niger ssp. macranthus*, *Epipactis atrorubens*, *Carex alba*.
91S0 *Western Pontic beech forests*

PAL.CLASS.: 41.1E1

1) *Fagus orientalis* forests of the Western Pontic range, the Strandja-Istranka mountains and the Eastern Balkan Range. The understory is typically rich in laurophyllous shrubs of euxinian affinities such as *Rhododendron ponticum*, *Daphne pontica*, *Laurocerasus officinalis*, *Ilex colchica*, *Ruscus hypoglossum*, *Vaccinium arctostaphylos* and with the euxinian herbaceous species such as *Primula acaulis* ssp. *rubra*, *Trachystemon orientalis*, *Teucrium lamifolium*, *Cyclamen coum* and *Epimedium pubigerum*. In the Eastern Balkan Range the laurophyllous shrubs are not present and the most characteristic taxa are *Primula acaulis* ssp. *rubra* and *Trachystemon orientalis*.

2) **Plants:** *Fagus orientalis*, *Quercus polycarpa*, *Daphne pontica*, *Ilex colchica*, *Laurocerasus officinalis*, *Prunus laurocerasus*, *Rhododendron ponticum*, *Ruscus hypoglossum*, *Cyclamen coum*, *Epimedium pubigerum*, *Festuca drymeja*, *Hedera helix*, *Hypericum androsaemum*, *Primula acaulis* ssp. *rubra*, *Teucrium lamifolium*, *Trachystemon orientalis*

91T0 Central European lichen Scots pine forests

PAL.CLASS.: 42.52112, 61.15p

1) Natural lichen-rich acidophilous *Pinus sylvestris* forests belonging to the alliance *Dicrano-Pinion* occurring on inland nutrient poor sands of the north-eastern plains and hills of Central Europe and of the nemoral belt of the middle and southern Sarmatic region. The trees are low growing as the soils are nutrient deficient and subject to drought stress

2) **Plants:** *Pinus sylvestris*, *Juniperus communis*, *Cladonia furcata*, *Cladonia gracilis*, *Cladonia silvatica*, *Ptilidium ciliare*

4) These forests are often a characteristic stage of natural succession on inland dunes (61.15), stands of plantation origin should not be included. Similar woodlands on coastal sand dunes should be regarded as '2180 Wooded dunes of the Atlantic, Continental and Boreal region'.

91U0 Sarmatic steppe pine forests (*Cytiso-Pinetalia*)

PAL.CLASS.: 42.5232
1) Xerophilous Scots pine woods of the Sarmatic region of western Eurasia and of areas with an extremely continental micro climate in northeastern Central and Eastern Europe. Towards its western limit this habitat is restricted to well drained habitats such as inland dunes and cliffs. There are many relict species of continental origin. Syntaxa included are the Anemono-Picetum sylvestris, Peucedano-Pinetum, Koelerio glaucae-Pinetum sylvestris, Caragano-Pinetum, Pyrolo-Pinetum sylvestris (p.) & Corynephoro-Pinetum sylvestris.

2) Plants: Pinus sylvestris, Vaccinium myrtillus, Pyrola minor, Orthilia minor, Chimaphilla umbellata, Ophrys insectifera, Coronilla vaginalis, Globularia punctata, Brachypodium pinnatum.

3) Corresponding categories
Czech classification: L8.2 Lesostepní bory

91V0 Dacian Beech forests (Symphyto-Fagion)
PAL.CLASS.: 41.1D2

1) Fagus sylvatica, Fagus sylvatica-Abies alba, Fagus sylvatica-Abies alba-Picea abies and Fagus sylvatica-Carpinus betula forests of the Romanian, Ukrainian and eastern Serbian Carpathian mountains and pre-Carpathian hills of the alliance Symphyto cordati-Fagion, with typical Fagetalia species, developed on neutral, basicline and sometimes acidocline substrates.

2) Plants: Symphytum cordatum, Cardamine glanduligera (syn Dentaria glandulosa), Hepatica transsilvanica, Pulmonaria rubra, Leucanthemum waldsteinii, Silene heuffelii, Ranunculus carpicicus, Euphorbia carniolica, Aconitum napellus, Saxifraga rotundifolia ssp. heuffelii, Primula elatior ssp. leucophylla, Hieracium rotundatum, Galium kitaibelianum, Moehringia pendula, Festuca drymeja

91W0 Moesian beech forests
PAL.CLASS.: 41.19

1) Fagus sylvatica or Fagus moesiaca forests of the Balkan Range, the southern Dinarides, the Moeso-Macedonian mountains, the Pelagonids and the Rhodopids of the alliance Doronico orientalis-Fagion moesiaci (syn Fagion moesiacum). Fagus sylvatica is accompanied, at the higher altitudes and latitudes, by Abies alba and Picea abies. The forests have, even in the south of their range, a pronounced medio-European character, marked by the frequency of species such as Acer pseudoplatanus, Quercus petraea, Fragaria vesca, & Oxalis acetosella.

2) Plants: Fagus moesiaca, Fagus sylvatica, Luzula luzuloides, Luzula sylvatica, Lerchenfeldia flexuosa, Calamagrostis arundinacea, Prenanthes purpurea, Festuca drymeja, Dicranum scoparium, Galium odoratum, Cardamine bulbifera, Lamiastrium galeobdolon, Impatiens noli-tangere, Pulmonaria rubra, Mercurialis perennis, Symphytum tuberosum, Sanicula europea, Lunaria rediviva, Oxalis acetosella, Allium ursinum
91X0

*Dobrogean Beech forests
PAL.CLASS.: 41.1F

1) Relict beech forests of the Macin Mountains, of extremely insular distribution, isolated within the steppe climate of the Romanian Dobrogea, far from the main beech regions of the Carpathians with Fagetalia species and southern European species in the herb layer.

2) Plants: Fagus sylvatica, F. taurica (syn F. taurica var. dobrogica), Tilia tomentosa, T. cordata, Carpinus betulus, Populus tremula, Ulmus glabra, Potentilla micrantha, Scutellaria altissima, Carex pilosa, Cystopteris fragilis, Carpesium cernuum, Melica uniflora, Milium effusum, Polygonatum multiflorum, Brachypodium sylvaticum, Bromus ramosus, Stacys sylvatica.

91Y0

Dacian oak & hornbeam forests
PAL.CLASS.: 41.2C

1) Forests of Carpinus betulus and various Quercus species, of the flanks and piedmont of the eastern and southern Carpathians and of the plateaux of western Ukraine; azonal, often isolated oak-hornbeam woods of the Moesian Quercion frainetto zone, of the eastern Pannonic and western Pontic steppe woods zone and of the pre-Pontic hills of southeastern Europe. They are characterized by an admixture of sub-Mediterranean Quercion frainetto species, and, in the east, of Euxinian species.

2) Plants: Carpinus betulus, Quercus robur, Q petreae, Q dalechampii, Quercus cerris, Quercus frainetto, Tilia tomentosa, Pyrus eleagrfolia, P. malus, Acer stevenii, Lonicera caprifolium, Cotinus coggyria, Stellaria holostea, Carex pilosa, C. brevicollis, Carpesium cernuum, Dentaria bulbifera, Galium schultesii, Festuca heterophylla, Ranunculus auricomus, Lathyrus hallersteinii, Melampyrum bihariense, Aposeris foetida, Helleborus odoros.

91Z0 Moesian Silver lime woods
PAL.CLASS.: 41.841

1) _Tilia tomentosa_ dominated facies of mixed deciduous forests of Southern Central Europe and the northern and middle part of the Balkan Peninsula, mostly within the range of _Quercion frainetto_, but also locally developed in conjunction with eastern _Carpinion betuli_ forests, in particular _Tilia tomentosa_ woods of the _Carpinus betulus - Quercus petraea_ belt of Bulgaria. Located mainly on the northern slopes of the foothills in connection with acidic soils and high soil moisture, they usually form monodominant communities with an impressive aroma when flowering. In the spring rich undergrowth is formed by _Coridalis cava, Coridallis solida, Scilla bifolia, Erytronium dens-canis, Ficaria verna_. _Carex sylvatica_ is a common species in the summer.

2) **Plants:** _Tilia tomentosa, Coridallis solida, Scilla bifolia, Erytronium dens-canis, Ficaria verna, Carex sylvatica._

91AA *Eastern white oak woods*
PAL.CLASS.: 41.7371, 41.7372

1) Azonal white-oak dominated woods with a submediterranean flora, occupying thermic oases within the sub-continental _Quercion frainetto_ and _Carpinion illyricum_ zones. Includes the subtypes:

41.7371 Thracian white oak-oriental hornbeam woods _Quercus pubescens - Quercus virgiliana_ woods of the Black Sea plains and hills of Turkey in Europe, and of the northern Thracian plain of southern and southeastern Bulgaria, where they are represented by mostly insular patches, particularly in the middle Maritsa and Tundja hills, the eastern and northern Rhodope foothills. The oaks are accompanied by _Carpinus orientalis, Fraxinus ornus, Acer campestre or Tilia tomentosa_ and by sub-Mediterranean floral elements. 41.7372 Moesian white oak woods Thermophilous, sub-Mediterranean _Quercus pubescens_ and _Quercus virgiliana_ woods of the southern Dinarides, the Balkan Range, and neighbouring regions including south eastern and southern Romania.

2) **Plants:** _Quercus pubescens, Q. virgiliana, Ostrya carpinifolia, Carpinus orientalis, Carpinus betulus, Fraxinus ornus, Galium dasypodium, Paeonia peregrina._

91BA Moesian silver fir forests

PAL.CLASS.: 42.16

1) Forests of *Abies alba* or of *Abies alba* mixed with *Fagus sylvatica*, *Picea abies*, *Pinus sylvestris* or *Pinus nigra* of the Rhodopides, the Balkan Range and the Meso-Macedonian mountains within the geographical range of *Fagion moesiacum* forests.

Located mainly on the northern slopes of the mountains on acidic well-drained soils with high moisture, they occur as a relatively thin line between the beech and the coniferous vegetation belts.

Sub-types:
- 42.1612 Rhodope fir forests
- 42.1613 Western Rhodopide fir forests
- 42.162 Moeso-Macedonian fir forests
- 42.163 Balkan Range fir forests

2) Plants: *Abies alba*, *Fagus sylvatica*, *Picea abies*, *Pinus sylvestris*

91CA Rhodopide and Balkan Range Scots pine forests

PAL.CLASS.: 42.5C2, 42.5C3

1) Forests dominated by *Pinus sylvestris* mainly on the southern slopes of the mountains of Rhodope, Rila, Pirin, Ossogovo and Balkan Range (North Central and NorthEast Greek mountains to Pieria), on both relatively dry siliceous and calcareous soils.

Pinus sylvestris communities are usually monodominant but accompanying species can include *Pinus nigra* ssp. *palassiana*, *Picea abies*, *Fagus sylvatica* and *Betula pendula*. Shrubs and small shrubs are represented by *Juniperus communis*, *Chamaecytisus absinthioides*, *Vaccinium vitis-idaea* and *Vaccinium myrtillus*.

In the herb layer characteristic species include *Calamagrostis arundinacea*, *Brachypodium pinnatum*, *Sesleria latifolia*, *Luzula sylvatica* and *Pteridium aquilinum*.

Sub-types:
- 42.5C2 Rhodopide Scots pine forests
- 42.5C3 Balkan Range Scots pine forests

2) Plants: *Pinus sylvestris*, *Calamagrostis arundinacea*, *Brachypodium pinnatum*, *Sesleria latifolia*, *Luzula sylvatica*, *Pteridium aquilinum.*

Mediterranean deciduous forests

9210 * Apennine beech forests with *Taxus* and *Ilex*

PAL.CLASS.: 41.181, 41.185 and 41.186

1) Thermophilous beech forests, highly fragmented and harbouring many endemics, with *Taxus baccata* and *Ilex aquifolium* (*Geranio nodosi-Fagion, Geranio striati-Fagion*). This habitat type includes: Monte Gargano Foresta Umbra, rich in *Taxus baccata* (41.181); silicicolous beech forests of the Aspromonte range of Calabria with *Taxus baccata, Populus tremula, Sorbus aucuparia* and *Betula pendula* (41.185); Relict beech forests of the Madonie, Nebrodi and, very locally, the monti Peloritani, with *Ilex aquifolium, Daphne laureola, Crataegus monogyna* and *Prunus spinosa* (41.186).

2) **Plants**: *Fagus sylvaticus, Ilex aquifolium, Taxus baccata.*

9220 * Apennine beech forests with *Abies alba* and beech forests with *Abies nebrodensis*

PAL.CLASS.: 41.186 and 41.187

1) Beech forests of the hill level, on sites colder than those of 41.181, highly fragmented and harbouring many endemics, with *Abies alba* and *Abies nebrodensis* (*Geranio nodosi-Fagion, Geranio striati-Fagion*). Relict beech forests of the Madonie, Nebrodi and, very locally, the monti Peloritani, with *Ilex aquifolium, Daphne laureola, Crataegus monogyna* and *Prunus spinosa* (41.186); isolated beech forests of Mount Etna, at the southern limit of the range of the species (41.187).

2) **Plants**: *Abies alba, *A. nebrodensis, Fagus sylvatica.*

9230 Galicio-Portuguese oak woods with *Quercus robur* and *Quercus pyrenaica*

PAL.CLASS.: 41.6

1) *Quercus pyrenaica*-dominated forests (*Quercion robori-pyrenaicae*).
 Sub-types:
 41.61 - Central Iberian *Quercus pyrenaica* forests
 Supra- and sometimes meso-Mediterranean Quercus pyrenaica forests of western Iberia, the Leonese interior, the Cordillera Central, the Iberian Range, the Montes de Toledo and the Sierra Morena.
 41.62 - Cantabrian *Quercus pyrenaica* forests
 Melampyro pratense-Quercetum pyrenaicae, Linario triornithophorae-Quercetum pyrenaicae Quercus pyrenaica formations of medio-European character, of the collinar and montane levels of the Cantabrian chain and its satellite ranges west to the Sierra de Picos de Ancares in Galicia, characteristic of areas with comparatively low precipitation, in the rain shadow of the coastward ranges or the interior oro-Cantabrian hills.
41.63 - Maestrazgan *Quercus pyrenaica* forests
Cephalanthero rubrae-Quercetum pyrenaicae
Quercus pyrenaica forests of the sub-Mediterranean siliceous enclaves of the Maestrazgo and eastern Catalan ranges, reduced to a very few relicts in the Penagolosa and Prades massifs.

41.64 - Baetic *Quercus pyrenaica* forests
Adenocarpo decorticantis-Quercetum pyrenaicae
Quercus pyrenaica forests of siliceous supra-Mediterranean areas with sub-humid climate of the western Sierra Nevada, the Sierra de Alfacar, the northern flanks of the Sierra de Cazulas and the Sierra Tejeda; in more humid locations *Fraxinus angustifolius* and *Acer granatense* accompany *Q. pyrenaica*.

41.65 - French *Quercus pyrenaica* forests
Betulo-Quercetum pyrenaicae i. a.
Quercus pyrenaica forests of south-western France north to the Sologne where they constitute relatively extensive formations on poor soils, with *Betula pendula*, *Lonicera periclymenum*, *Deschampsia flexuosa*, *Holcus mollis*, *Molinia caerulea*, *Teucrium scorodonia*.

2) **Plants:** *Quercus pyrenaica*. *Q. robur*.

9240 *Quercus faginea* and *Quercus canariensis* Iberian woods

PAL.CLASS.: 41.77

1) Forests and woods dominated by *Quercus faginea*, *Quercus canariensis* or *Quercus afares*. The humid formations of south-western Iberia (41.772 and 41.773) are forest types of unique character in Europe and of extreme biological importance.

Sub-types:

41.771 - Spanish *Quercus faginea* forests
Spiraeo obovatae-Quercetum fagineae, *Cephalanthero longifoliae-Quercetum fagineae*, *Violo wilkommii-Quercetum fagineae*, *Daphno latifoliae-Aceretum granatensis*, *Fraxino orni-Quercetum fagineae*
Xero-mesophile *Quercus faginea* formations of slopes and plateaux of middle elevations of the Spanish Meseta and associated ranges.

41.772 - Portuguese *Quercus faginea* forests
Arisaro-Quercetum fagineae
Humid, epiphyte-clad, dense, relict *Quercus faginea* forests of Portugal, restricted to a very few isolated localities.

41.773 - Andalusian *Quercus canariensis* forests
Rusco hypophylli-Quercetum canariensis
Humid and hyper-humid, luxuriant *Quercus canariensis* forests of the sierras of extreme southern Spain, limited to the Aljibe and a very few localities in the Serrania de Ronda.

41.774 - Catalanion *Quercus canariensis* stands
Carici depressae-Quercetum canariensis
Formations of Catalonia rich in *Quercus canariensis*.

41.775 - Balearic *Quercus faginea* woods
Acri-Quercetum fagineae p.
Relict formations of Mallorca dominated by, or rich in, *Quercus faginea*.

2) **Plants:** *Quercus faginea*. *Q. canariensis*.
9250 Quercus trojana woods
PAL.CLASS.: 41.78

1) Supra-Mediterranean, and occasionally meso-Mediterranean woods dominated by the semi-deciduous *Quercus trojana* or its allies (*Quercetum trojanae*).

Sub-types:

41.781 - Helleno-Balkanic Trojan oak woods
Usually low formations dominated by *Quercus trojana*, often with junipers or maples, of Macedonia, Thrace and Thessaly, north to Herzegovina, Montenegro, Albania and the Vardar valley of Paeonia.

41.782 - Apulian Trojan oak woods
Relict woods, sometimes of considerable height, of *Quercus trojana* and *Q. pubescens*, often with an admixture of *Q. ilex* and its associated vegetation (Murge: e.g. bosco delle Pianelle, foresta Gaglione).

2) **Plants:** *Quercus trojana*.

9260 Castanea sativa woods
PAL.CLASS.: 41.9

1) Supra-Mediterranean and sub-Mediterranean *Castanea sativa*-dominated forests and old established plantations with semi-natural undergrowth.

2) **Plants:** *Castanea sativa*.

9270 Hellenic beech forests with Abies borisii-regis
PAL.CLASS.: 41.1A

1) *Fagus sylvatica* forests with reduced medio-European character and high endemism, characterised by the presence of *Abies borisii-regis, Doronicum caucasicum, Galium laconicum, Lathyrus venetus, Helleborus cyclophyllus* (*Fagion hellenicum*).

2) **Plants:** *Fagus sylvatica, Abies borisii-regis*.

9280 Quercus frainetto woods
PAL.CLASS.: 41.1B

1) *Fagus sylvatica* or *Fagus moesiaca* forests, more thermophile than those of 41.19 and 41.1A, occurring in the transition zone between the supra-Mediterranean and montane levels, characterised by the presence of numerous species of the *Quercion frainetto*.

2) **Plants:** *Fagus sylvatica, Quercus frainetto*.
9290 *Cupressus forests (Acero-Cupression)*
PAL.CLASS.: 42.A1
1) Montane forests of the Mediterranean basin, dominated by *Cupressus sempervirens*, *Cupressus atlantica* or *Cupressus dupreziana* (Acero-Cupression).
2) Plants: *Cupressus sempervirens*.

92A0 *Salix alba and Populus alba galleries*
PAL.CLASS.: 44.141, 44.162 and 44.6
1) Riparian forests of the Mediterranean and Black Sea basins dominated by *Salix alba*, *Salix fragilis* or their relatives (44.141). Mediterranean and Central Eurasian multi-layered riverine forests with *Populus* spp., *Ulmus* spp., *Salix* spp., *Alnus* spp., *Acer* spp., *Tamarix* spp., *Juglans regia*, *Quercus robur*, *Quercus pedunculifolia*, *Fraxinus angustifolia*, *Fraxinus palliisae*, lianas. Tall poplars, *Populus alba*, *Populus caspica*, *Populus euphratica* (*Populus diversifolia*), are usually dominant in height; they may be absent or sparse in some associations which are then dominated by species of the genera listed above (44.6).
2) Plants: *Salix alba*, *Populus alba*.

92B0 *Riparian formations on intermittent Mediterranean water courses with Rhododendron ponticum, Salix and others*
PAL.CLASS.: 44.52 and 44.54
1) Distinctive, relict thermo- and meso-Mediterranean alder galleries of deep, steep-sided valleys, with *Rhododendron ponticum* ssp. *baeticum*, *Frangula alnus* ssp. *baetica*, *Arisarum proboscideum* and a rich fern community including *Pteris incompleta*, *Diplazium caudatum*, *Culcita macrocarpa* (44.52).
Relict *Betula parvibracteata* riparian galleries. The dominant species, an extremely local endemic, is accompanied by *Myrica gale*, *Frangula alnus*, *Salix atrocinerea*, *Galium broterianum*, *Scilla ramburei* (44.54).
4) The *Rhododendron*-alder galleries are often in contact with humid to hyper-humid *Quercus canariensis* forests (41.773) and with *Salix pedicellata* formations (44.1271).
Platanus orientalis and Liquidambar orientalis woods (Plantanion orientalis)

PAL.CLS.: 44.71 and 44.72

1) Forests and woods, for the most part riparian, dominated by Platanus orientalis (oriental plane) or Liquidambar orientalis (sweet gum), belonging to the Plantanion orientalis alliance.

Sub-types:
44.71 - Oriental plane woods (Plantanion orientalis)
Forests of Platanus orientalis.

44.711 - Helleno-Balkanic riparian plane forests
Platanus orientalis gallery forests of Greek and southern Balkanic watercourses, temporary rivers and gorges; they are distributed throughout the mainland and archipelagos, colonising poorly stabilised alluvial deposits of large rivers, gravel or boulder deposits of permanent or temporary torrents, spring basins, and particularly, the bottom of steep, shady gorges, where they constitute species-rich communities. The accompanying flora may include Salix alba, S. elaeagnos, S. purpurea, Alnus glutinosa, Cercis siliquastrum, Celtis australis, Populus alba, P. nigra, Juglans regia, Fraxinus ornus, Alnus glutinosa, Crataegus monogyna, Cornus sanguinea, Ruscus aculeatus, Vitex agnus-castus, Nerium oleander, Rubus spp., Rosa sempervirens, Hedera helix, Clematis vitalba, Vitis vinifera ssp. sylvestris, Ranunculus ficaria, Anemone blanda, Aristolochia rotunda, Saponaria officinalis, Symphytum bulbosum, Hypericum hircinum, Calamintha grandiflora, Melissa officinalis, Helleborus cyclophyllus, Cyclamen hederifolium, C. repandum, C. creticum, Galanthus nivalis ssp. reginae-olgae, Dracunculus vulgaris, Arum italicum, Biarum tenuifolium, Brachypodium sylvaticum, Dactylis glomerata and may be rich in mosses, lichens and ferns, among which Pteridium aquilinum is often abundant. Various associations have been described, reflecting regional and ecological variation in the composition of the undergrowth. The plane tree galleries are particularly well represented along the Ionian coast and in the Pindus; other important local complexes exist in Macedonia, in Thrace, around the Olympus massif, in the Pelion, in the Peloponnese, particularly in the Taygetos, where luxuriant gorge forests reach 1300m, in Euboea and in Crete; local, distinctive, representatives occur in other Aegean islands, such as Rhodes, Samos, Samothrace, Thasos. Restriction to gorges is increasingly pronounced towards the south.

44.712 - Sicilian plane tree canyons
Relict Platanus orientalis-dominated or P. orientalis-rich galleries of the Cassabile, the Anapo, the Irmino and the Carbo rivers, in the Iblei range of south-eastern Sicily, of the gorge of the Sirmeto, in the vicinity of the Nebrodi. Some of these formations, in particular, in the gorges of the Cassabile and of the Anapo, are true plane tree woods. Others, such as on the Sirmeto, are Populus alba, Fraxinus angustifolia, Salix spp. formations with Platanus orientalis; as they grade into each other, and because of the very isolated occurrence, and great biogeographical and historical interest of Platanus orientalis in Sicily, they are all listed here. Plane tree woods have had a much greater extension in Sicily and probably in Calabria. A large forest has, in particular, existed on the Alcantara, where the species is now extinct.

44.72 - Sweet gum woods
Riverine forests dominated by the Tertiary relict Liquidambar orientalis, with very limited range in south Asia Minor and Rhodes.

44.721 - Rhodian sweet gum woods
Liquidambar orientalis gallery forest of the Petaloudhes Valley, on Rhodes, with poorly developed undergrowth and a ground layer dominated by Adiantum capillus-veneris in damp
areas. This forest constitutes the only European formation of this species and harbours the unique, concentrated aggregation of Jersey Tiger Moths, *Panaxia quadripunctaria*.

2) **Plants:** *Platanus orientalis, Liquidambar orientalis.*

92D0 Southern riparian galleries and thickets (Nerio-Tamaricetea and Securinegion tinctoriae)

PAL.CLASS.: 44.81 to 44.84

1) Tamarisk, oleander, and chaste tree galleries and thickets and similar low ligneous formations of permanent or temporary streams and wetlands of the thermo-Mediterranean zone and south-western Iberia, and of the most hygromorphic locations within the Saharo-Mediterranean and Saharo-Sindian zones. Includes formations of *Tamarix smyrnensis* (syn. *Tamarix ramossissima*) of stream sides and coastal localities of the Pontic and Steppic regions of western Eurasia.

The formations with *Tamarix africana* should not be taken into account.

2) **Plants:** *Nerium oleander, Vitex agnus-castus, Tamarix spp., Securinega tinctoria, Prunus lusitanica, Viburnum tinus.*

Mediterranean sclerophyllous forests

9310 Aegean Quercus brachyphylla forests

PAL.CLASS.: 41.735

1) Stands of *Quercus brachyphylla*, often associated with *Quercus macrolepis* or *Q. ilex*.

2) **Plants:** *Quercus brachyphylla.*

9320 Olea and Ceratonia forests

PAL.CLASS.: 45.1

1) Thermo-Mediterranean or thermo-Canarian woodland dominated by arborescent *Olea europaea* ssp. *sylvestris*, *Ceratonia siliqua*, *Pistacia lentiscus*, *Myrtus communis* or, in the Canary Islands, by *Olea europaea* ssp. *cerasiformis* and *Pistacia atlantica*. Most formations will be listed as arborescent matorral (35.12), but a few stands may have a sufficiently tall, closed canopy to qualify for this unit.

Sub-types:

45.11 - Wild olive woodland

Olea europaea ssp. *sylvestris* - dominated formations. A climax olive forest, with *Ceratonia siliqua* and *Pistacia lentiscus* exists on the north flank of Djebel Ichkeul in northern Tunisia. Elsewhere, the communities most resembling olive forest are found in southern Andalusia (*Tamo communis-Oleetum sylvestris*: extinct?), in Menorca (*Prasio majoris-Oleetum sylvestris*), Sardinia, Sicily, Calabria, Crete.
45.12 - Carob woodland
Ceratonia siliqua - dominated formations, often with *Olea europaea* ssp. *sylvestris* and *Pistacia lentiscus*. The most developed examples, some truly forest-like, are to be found in Tunisia, on the slopes of the Djebel, where they constitute carob-dominated facies of the wild olive woodlands (45.11), in Mallorca (*Cneoro tricocci-Ceratonietum siliquae*), in eastern Sardinia, in south-eastern Sicily, in Puglia, in Crete.

45.13 - Canarian olive woodland
Olea europaea ssp. *cerasiformis* and *Pistacia atlantica* formations of the Canary Islands.

9330 *Quercus suber* forests
PAL.CLASS.: 45.2

1) West-Mediterranean silicicolous forests dominated by *Quercus suber*, usually more thermophile and hygrophilic than 45.3.

Sub-types:

45.21 - Tyrrenian cork-oak forests
Quercion suberis
Mostly meso-Mediterranean *Quercus suber* forests of Italy, Sicily, Sardinia, Corsica, France and north-eastern Spain. They are most often degraded to arborescent matorral (32.11).

45.22 - South-western Iberian cork-oak forests
Quercion fagineo-suberis
Quercus suber forests, often with *Q. faginea* or *Q. canariensis*, of the south-western quadrant of the Iberian peninsula.

45.23 - North-western Iberian cork-oak forests
Very local, exiguous *Quercus suber* enclaves in the *Q. pyrenaica* forest area of the valleys of the Sil and of the Mino (Galicia).

45.24 - Aquitanian cork-oak woodland
Isolated *Q. suber*-dominated stands occurring either as a facies of dunal pine-cork oak forests or in a very limited area of the eastern Landes.

2) Plants: *Quercus suber*.

9340 *Quercus ilex* and *Quercus rotundifolia* forests
PAL.CLASS.: 45.3

1) Forests dominated by *Quercus ilex* or *Q. rotundifolia*, often, but not necessarily, calcicolous.

Sub-types:

45.31 - Meso-Mediterranean holm-oak forests
Rich meso-Mediterranean formations, penetrating locally, mostly in ravines, into the thermo-Mediterranean zone. They are often degraded to arborescent matorral (32.11), and some of the types listed below no longer exist in the fully developed forest state relevant to category 45; they have nevertheless been included, both to provide appropriate codes for use in 32.11, and because restoration may be possible.

45.32 - Supra-Mediterranean holm-oak forests
Formations of the supra-Mediterranean levels, often mixed with deciduous oaks, *Acer* spp. or *Ostrya carpinifolia*.

45.33 - Aquitanian holm-oak woodland
Isolated Quercus ilex-dominated stands occurring as a facies of dunal pine-holm oak forests.

45.34 - Quercus rotundifolia woodland
Iberian forest communities formed by Q. rotundifolia. Generally, even in mature state, less tall, less luxuriant and drier than the fully developed forests that can be constituted by the closely related Q. ilex, they are, moreover, most often degraded into open woodland or even arborescent matorral. Species characteristic of the undergrowth are Arbutus unedo, Phillyrea angustifolia, Rhamnus alaternus, Pistacia terebinthus, Rubia peregrina, Jasminum fruticans, Smilax aspera, Lonicera etrusca, L. impexa.

2) Plants: Quercus ilex, Q. rotundifolia.

9350 Quercus macrolepis forests
PAL.CLASS.: 41.79

1) Woods dominated by the semi-deciduous Quercus macrolepis, often fairly open, mostly of the meso-Mediterranean zone.
Sub-types:
41.791 - Hellenic valonia oak woods
Quercus macrolepis formations of continental Greece and its archipelagos, as well as of adjacent Albania; well developed forests exist, in particular, in the Ionian islands and on Lesbos; more modified, grove-like, stands, exist on the maritime slopes of the low mountains bordering the gulf of Arta and in western Etolia, in the north-western Peloponnese, in Thessaly, in Attica, in Thrace.
41.792 - Apulian valonia oak woods
Relict Quercus macrolepis formations of Salento (Tricase).

2) Plants: Quercus macrolepis.

9360 * Macaronesian laurel forests (Laurus, Ocotea)
PAL.CLASS.: 45.61 to 45.63

1) Humid to hyper-humid, mist-bound, luxuriant, evergreen, lauriphyllous forests of the cloud belt of the Macaronesian islands, extremely rich in floral and faunal species, among which many are restricted to these communities (Pruno-Lauretalia). Genera such as Picconia, Semele, Gesnouinia, Lactucosonchus, Ixanthus are entirely endemic to these communities, while others, such as Isoplexis, Visnea and Phyllis, reach in them their maximum development; in addition, each of the formations of the various archipelagos harbours distinctive endemic species.
This habitat type includes:
- lauriphyllous forests of the Azores (45.61 Ericetalia azorica p.), where the humid forests of the coastal areas (Myrico-Pittosporietum undulati p.) have been totally or almost totally degraded, largely invaded by the introduced Australian Pittosporum undulatum; a better representation survives of the hyper-humid forests (Culcito-Juniperion brevifolii p.) of higher elevations;
- lauriphyllous forests of Madeira (45.62 Pruno-Lauretalia azorica) still occupying a relatively large surface, of the order of 10,000 ha;
- lauriphyllous forests of the Canary Islands (45.63 Ixantho-Laurion azoricae); the laurel forests of each island harbour a distinctive set of endemic plants and animals, as exemplified by the species of the composite genus Pericallis, the well-marked races of the chaffinch Fringilla coelebs or the carabid fauna.
2) **Plants:** Apollonias barbujana, Ardisia bahamensis, Asparagus fallax, Canarina canariensis, Carex canariensis, C. eregrina, Clethra arborea, Convolvulus canariensis, Cryptotaenia elegans, Erica arborea, Euphorbia melifera, #E. stygiana, #Frangula azorica, Geranium canariensis, Heberdenia excelsa, Hedera canariensis, Ilex canariensis, I. perado ssp. azorica, I. perado ssp. perado, Isolepis canariensis, Ixanthus viscosus, Juniperus brevifolia, Laurus azorica, Myrica faya, Ocotea foetens, Persea indica, #Picconia azorica, P. excelsa, #Pittosporum coriaceum, Pleiomeris canariensis (=Myrsine canariensis), Prunus lusitanica, #P. l. ssp. azorica, P. l. ssp. hixa, Rubia peregrina, Rubus bollei, Ruscus streptophyllus, Sambucus lanceolata, *S. palmensis, Semele androgyna, Senecio auritus (=S. maderensis), Sideretis canariensis, S. macrostachys, Smilax aspera, Smilax canariensis, S. divaricata, Sonchus fruticosus, Tamus edulis, Teline maderensis (=Cytisus maderensis), Vaccinium cylindraceum, V. padifolium, Viburnum tinus ssp. subcordatum, Visnea mocanera.

Animals: Columba bollei, C. junionae, C. trocaz, Fringilla coelebs ssp. ombrosa, F. teydea, F. t. ssp. polatzeiki.

9370

Palm groves of Phoenix

PAL.CLASS.: 45.7

1) **Woods,** often riparian, formed by the two endemic palm trees, *Phoenix theophrasti* and *Phoenix canariensis.*

The palm groves of Crete are restricted to damp sandy coastal valleys; they include the extensive forest of Vai, where the luxuriant palm growth is accompanied by a thick shrubby undergrowth rich of *Nerium oleander,* and about four other smaller coastal groves, notably on the south coast of the prefectorate of Rethimnon.

The Canarian palm groves are mostly characteristic of the bottom of barrancos and of alluvial soils, below 600 metres; particularly representative examples are found at Fragata, Maspalomas and Barranco de Tirajana in the Gran Canary, Valle Gran Rey in La Gomera, Masca in Ténériffe and Brena Alta in La Palma.

2) **Plants:** *Phoenix canariensis,* #Phoenix theophrasti.

9380

Forests of Ilex aquifolium

PAL.CLASS.: 45.8

1) **Communities dominated by arborescent** *Ilex aquifolium,* relict of various forests with a field layer rich in *Ilex* and sometimes with *Taxus* (42.A7), of the supra-Mediterranean level on various substrates. These woods correspond to the senescence stage of a forest with a undergrowth with *Taxus* and *Ilex* (belonging among others to the *Ilici-Quercetum ilicis*), after the fading of the tree layer. They generally form patches inside or outside forests.
9390 *Scrub & low forest vegetation with *Quercus alnifolia*
PAL.CLASS.: 45.48

1) Arborescent *Quercus alnifolia*-dominated formations on basic eruptive substrates of the Troodos range, together with mattrals derived from these forests (32.1146).

2) Plants *Quercus alnifolia, Acer sempervirens, Teucrium kotschyanu, Salvia cypria, Crepis fraasii, Sedum cyprium*

93A0 Woodlands with *Quercus infectoria* (*Anagyro foetidae- Quercetum infectoriae*)
PAL.CLASS.: 45.46 (p)

1) *Quercus infectoria* woods constitute the potential natural vegetation growing on limestones and chiefly marly limestone substrata of the Troodos Mountains between 600 – 700 to 1000 –1100 m. Degraded stages of these communities are associated with *Quercetalia ilicis* maquis (*Quercus coccifera* subsp. *pseudococcifera*) or with *Cistus creticus* phrygana.

2) Plants *Quercus infectoria, Q. brachypylla, Q. coccifera ssp. calliprinos, Arbutus andrachne, Acer syriacum, Fontanesia philliraeoides, Aristolochia altissima, Cyclamen persicum, Eryngium falcatum, Anagris foetida, Styrax officinalis, Agropyron panormitanum, Glaucosciadium cordifolium, Crepis micrantha: Crataegus azarolus, Pinus brutia, Pistacia terebinthus, P. lentiscus, Arbutus andrachne, Calicotome villosa, Cistus creticus, Phllostemon chamaepeuce var. cypria, Allium neapolitanum, Ferula communis, Geranium tuberosum, Scaligeria cretica, Scutellaria cypria var. cypria, Serrutula cerinthifolia.*

4) The *Anagyro foetidae- Quercetum infectoriae* association may become degraded to maquis (9320), or phrygana (5420).

Temperate mountainous coniferous forests

9410 Acidophilous *Picea* forests of the montane to alpine levels (*Vaccinio-Piceetea*)
PAL.CLASS.: 42.21 to 42.25

1) Sub-alpine and alpine conifer forests (dominated by *Picea abies* and *Picea orientalis*).
Sub-types:

- **42.21** - Alpine and Carpathian sub-alpine spruce forests. *Piceetum subalpinum.*
- *Picea abies* forests of the lower sub-alpine level, and of anomalous stations in the montane level, of the outer, intermediate and inner Alps; in the latter, they are often in continuity with the montane spruce forests of 42.22. The spruces are often stunted or columnar; they are accompanied by an undergrowth of decidedly sub-alpine affinities. *Picea abies* forests of the lower sub-alpine level of the Carpathians.
42.22 - Inner range montane spruce forests. *Piceetum montanum.*

Picea abies forests of the montane level of the inner Alps, characteristic of regions climatically unfavourable to both beech and fir. Analogous *Picea abies* forests of the montane and collinar levels of the inner basin of the Slovakian Carpathians subjected to a climate of high continentality.

42.23 - Hercynian sub-alpine spruce forests

Sub-alpine *Picea abies* forests of high Hercynian ranges.

42.24 Southern European Norway spruce forests

Outlying *Picea abies* formations of the Apennines, the southern Dinarides, the Balkan Range and the Rhodopides, at the southern limit of the range of the species and mostly south of its continuous range.

42.25 - Peri-Alpine spruce forests

Spontaneous *Picea abies* formations occupying outlying altitudinal or edaphic enclaves within the range of more predominant vegetation types of the montane levels of the outer Alps, the Carpathians, the Dinarides, the Jura, the Hercynian ranges, the subalpine levels of the Jura, the western Hercynian ranges and the Dinarides.

2) **Plants: Picea abies, Vaccinium spp.**

9420 **Alpine *Larix decidua* and/or *Pinus cembra* forests**

PAL.CLASS.: 42.31, 42.32 and 42.35

1) Forests of the sub-alpine and sometimes montane levels, dominated by *Larix decidua* or *Pinus cembra*; the two species may form either pure or mixed stands, and may be associated with *Picea abies* or *Pinus uncinata*.

Sub-types:

42.31 - Eastern Alpine siliceous larch and arolla forests. *Larici-Cembretum.*

Sub-alpine *Larix decidua, Pinus cembra, or Larix decidua-Pinus cembra* forests of the eastern and central Alps, mostly of the inner ranges, usually on siliceous substrates, with an often species-poor undergrowth comprising *Vaccinium myrtillus, Rhododendron ferrugineum, Calamagrostis villosa, Luzula albida.*

42.32 - Eastern Alpine calcicolous larch and arolla forests. *Laricetum, Larici-Cembretum Rhododendretosum hirsuti.*

Sub-alpine and montane *Larix decidua, Larix decidua - Picea abies, Pinus cembra or Larix decidua-Pinus cembra* forests of the eastern and central Alps, mostly of the outer ranges, on calcareous substrates, with a usually species-rich undergrowth including *Erica herbacea, Polygala chamaebeus, Rhododendron hirsutum or Pinus mugo.*

42.35 - Carpathian larch and arolla forests

Uncommon *Larix decidua or Pinus cembra* formations of the Carpathians, each occurring as a single dominant, together as codominants, or mixed with *Picea abies*.

2) **Plants: Larix decidua, Pinus cembra.**

21 Bayerischer Wald, Harz (above 750 m) and Erzgebirge.
9430 Subalpine and montane *Pinus uncinata* forests
(* if on gypsum or limestone*)

PAL.CLASS.: 42.4

1) Mountain pine (*Pinus uncinata*) forests, usually open and with a very developed shrubby understory, of the subalpine and montane levels; on limestone, gypsum or siliceous substrate in a cool or thermophile situation depending on the region. Sometimes mixed with *Pinus sylvestris*, more rarely with *Larix-Pinus cembra*.

Two major types: 42.41 - mountain pine forests of the western outer Alps, the Jura and Pyrenean ubacs, developed on siliceous or decalcified soils of the subalpine level with a predominately ericaceous undergrowth comprising *Rhododendron ferrugineum* (*Rhododendro-Vaccinion* p.); 42.42 - xerocline mountain pine forests of the inner Alps, of the western outer Alps and the Jura, and of Pyrenean adrets, accompanied by a shrubby undergrowth in which *Rhododendron ferrugineum* is absent or rare (*Juniper-Pinion* p., *Erico-Pinion* p.)

2) **Plants:** *Arctostaphylos alpina, A. uva-ursi, Astrantia minor, Calluna vulgaris, Coronilla vaginalis, Cotoneaster integrerrimus, Crepis alpestris, Daphne striata, Deschampsia flexuosa, Dryas octopetala, Erica herbacea, Homogyna alpina, Huperzia selago, Juniperus hemisphaerica, J. nana, Lycopodium annotinum, Pinus uncinata, Polygala chamaebuxus, Rhamnus saxatilis, Rhododendron ferrugineum, Rhododendron hirsutum, Thesium rostratum, Vaccinium myrtillus, V. uliginosum.*

4) In association with bog woodland (44.A), *Pinus mugo* scrub (31.5) and sometimes pioneer phases of fir or spruce in disturbed zones.

Mediterranean and Macaronesian mountainous coniferous forests

9510 *Southern Apennine *Abies alba*

PAL.CLASS.: 42.15

1) Relict *Abies alba* woods associated with the beech forests of the *Geranio versicolori-Fagion*.

2) **Plants:** *Abies alba.*

9520 *Abies pinsapo* forests

PAL.CLASS.: 42.19

1) Forests and stands of the endemic *Abies pinsapo* of the supra-meso-Mediterranean level. Calcicolous forests; ultra basic serpentine outcroppings.

2) **Plants:** *Abies pinsapo.*
9530 * (Sub-)Mediterranean pine forests with endemic black pines

PAL.CLASS.: 42.61 to 42.66

1) Forests of the montane-Mediterranean level, on dolomitic substrate (high tolerance to magnesium), dominated by pines of the Pinus nigra group, often with a dense structure.

Sub-types:
42.61 - Alpino-Apennine Pinus nigra forests - Pinus nigra s.s. forests of the eastern Italian, Austrian and Slovenian Alps and of the Apennines;
42.62 - Western Balkanic Pinus nigra forests - Pinus nigra ssp. nigra of the Dinarides, the Pelagonides; Pinus dalmatica forests of the Dalmatian coastal areas;
42.63 - Salzmann's pine forests - Pinus salzmannii forests of Spain (Pyrenees, northern Iberian Range, sierra de Gredos, serrania de Cuenca, Maestrazgo, sierras de Cazorla, Segura and Alcaraz, calcareous periphery of the Sierra Nevada) and the Causses;
42.64 - Corsican laricio pine forests - Pinus laricio forests of the mountains of Corsica (1000 to 1800 m) on granitic soils;
42.65 - Calabrian laricio pine forests - Pinus laricio var. calabrica forests of the Sila (Sila Greca, Sila Grande, Sila Piccola), the Aspromonte and Etna;
42.66 - Pallas's pine forests - montane forests of Pinus pallasiana of Greece and the Balkan peninsula.

2) Plants: Pinus laricio, Pinus nigra, Pinus pallasiana, Pinus salzmannii.
Animals: Sitta whiteheadi.

9540 Mediterranean pine forests with endemic Mesogean pines

PAL.CLASS.: 42.8

1) Mediterranean and thermo-Atlantic woods of thermophilous pines, mostly appearing as substitution or paraclimactic stages of forests of the Quercetalia ilicis or Ceratonio-Rhamnetalia. Long-established plantations of these pines, within their natural area of occurrence, and with an undergrowth basically similar to that of paraclimactic formations, are included.

Sub-types:
42.81 - Maritime pine forests
Forests and plantations of Pinus pinaster ssp. atlantica of south-western France and the western Iberian peninsula.
42.82 - Mesogean pine forests
Forests of Pinus pinaster ssp. pinaster (=Pinus mesogeensis) of the western Mediterranean, mostly in siliceous meso-Mediterranean, upper meso-Mediterranean and supra-Mediterranean situations of Spain, Corsica, south-eastern France, north-western Italy, Sardinia and Pantelleria.
42.821 - Iberian mesogean pine forests
Pinus pinaster forests of the Iberian peninsula, appearing mostly as substitution communities of Quercus rotundifolia, Q. pyrenaica or, locally, Q. suber, Q. faginea woodlands.
42.822 - Corbières mesogean pine forests
Isolated Pinus pinaster - dominated woods of the Corbières.
42.823 - Franco-Italian mesogean pine forests
Pinus pinaster forests of siliceous lower meso-Mediterranean areas of Provence, of marls and limestones of the upper meso-Mediterranean level of the Maritime Alps and the Ligurian Alps, and of mostly siliceous or clayey soils of the hills of Liguria and Tuscany.
42.824 - Corsican mesogean pine forests
Pinetum pinastri, Erico-Arbutetum p., Galio-Pinetum p.
Pinus pinaster-dominated forests of the meso- and supra-Mediterranean levels of Corsica, mostly on granitic substrates; they are very developed, accompanied by a maquis-like understory, in the meso-Mediterranean zone, mostly in its upper levels; they occur locally within the supra-Mediterranean zone, on adrets and at lower altitudes, as facies of laricio pine forests.

42.825 - Sardinian mesogean pine forests
Pinus pinaster formations on granitic substrates of northern Sardinia, with *Arbutus unedo, Quercus ilex, Rosmarinus officinalis, Erica arborea, Genista corsica, Lavandula stoechas, Rubia peregrina, Calicotome spinosa, Pistacia lentiscus, Teucrium marum.*

42.826 - Pantellerian mesogean pine forests
Pinus pinaster woods of Pantelleria.

42.83 - Stone pine forests
Mediterranean forests and old naturalised plantations of *Pinus pinea*. Old introductions in many areas often makes the distinction between self sown forests and long-established formations of artificial origin difficult. These are thus included here, while recent, obviously artificial groves are not.

42.831 - Iberian stone pine forests
Pinus pinea forests of the Iberian peninsula, where they reach their greatest development.

42.832 - Balearic stone pine woods
Pinus pinea formations of the Balearic Islands, native only on Ibiza and Formentera.

42.833 - Provence stone pine woods
Pinus pinea formations of Provence, possibly spontaneous on coastal sands and in the Maures area.

42.834 - Corsican stone pine woods
Pinus pinea formations of the littoral of Corsica, some of which may be of natural origin, in particular on old dunes of the east coast.

42.835 - Sardinian stone pine forests
Pinus pinea formations of Sardinia.

42.836 - Sicilian stone pine forests
Pinus pinea formations of the Monti Peloritani, north-western Sicily, of probable native origin.

42.837 - Peninsular Italian stone pine forests
Large, ancient, *Pinus pinea* plantations of the Tyrennian, and locally, Adriatic coasts of the Italian peninsula, in Liguria, Toscany, Latium, Campania, Emilia-Romana (Ravenna) and Friuli-Venetiia Giulia (Grado).

42.838 - Greek stone pine forests
Pinus pinea woods of the littoral and coastal hills of the Peloponnese, Chalcidice, Crete and Aegean islands, rather local but probably in part, at least, spontaneous; a splendid example exists, in particular, on Skiathos.

42.84 - Aleppo pine forests
Woods of *Pinus halepensis*, a frequent colonist of thermo- and calciculous meso-Mediterranean scrubs. The distinction between spontaneous forests and long-established formations of artificial origin is often difficult. The latter are thus included here, while recent, obviously artificial groves are not.

42.841 - Iberian Aleppo pine forests
Pinus halepensis forests of Spain, considered native for at least two-thirds of their considerable expanse; they are mostly restricted to eastern regions on the Mediterranean slope of the Catalanian mountains, the Maestrazgo, the pre-Baetic ranges of the upper Guadalquivir basin, the southern Andalusian mountains; they penetrate farther inland in the Ebro basin and around the headwaters of the Tagus and Guadalquivir systems.

42.842 - Balearic Aleppo pine forests
Pinus halepensis formations of the Balearics, present and probably native on all the major islands.

42.843 - Provençal-Ligurian Aleppo pine forests
Mostly lower meso-Mediterranean *Pinus halepensis* forests of Provence and of the lower slopes and coastlines of the Maritime and Ligurian Alps, extensive and undoubtedly native.

42.844 - Corsican Aleppo pine woods
Rare and local *Pinus halepensis* woods of the Corsican coasts, some, at least, possibly natural.

42.845 - Sardinian Aleppo pine woods
Pinus halepensis formations of Sardinia, where certainly native woods occur on Isola di San Pietro and the Sulcis coast of Iglesiente.

42.846 - Sicilian Aleppo pine woods
Pinus halepensis formations of Sicily and peripheral islands (Egadi, Lampedusa, Pantelleria).

42.847 - Peninsular Italian Aleppo pine forests
Pinus halepensis formations of the Italian peninsula; extensive, probably at least partially native ones are individualised in the subdivisions below.

42.848 - Greek Aleppo pine forests
Pinus halepensis formations of Greece, where the species is relatively widespread, particularly in Attica, Thessaly, the coasts of the Peloponnese and of central continental Greece, the Ionian islands, Chalcidici, the northern Sporades, Euboea and Skiros.

42.85 - Aegean pine forests
Pinus brutia forests of Crete and eastern Aegean islands. Eastern vicariants of Aleppo pine forests (42.84), they comprise, however, taller, more luxuriant, and often extensive, formations. Disjunct formations of this pine or of related species, described from Crimea and the Caucasian region (*Pinus pityusa*, *Pinus stankewiczii*, *Pinus eldarica*) have been included.

42.851 - Aegean pine forests of Crete
Pinus brutia-dominated forests of Crete and its satellite islands Gavdos and Gaidaronisi; pure or mixed with *Cupressus sempervirens*; they are widespread in particular in the White Mountains, the Psiloriti range, the Dikti range and, locally, in the Sitia mountains and the Asterousia mountains.

42.852 - Aegean pine forests of Lesbos
Extensive *Pinus brutia* forests of Lesbos, occupying Mount Olympus and surrounding hills in the south-eastern quadrant of the island, as well as parts of the Kuratsonas range in the north-west; these forests harbour the only European population of the nuthatch *Sitta krueperi* and the most significant one of the orchid *Comperia comperiana*.

42.853 - Aegean pine forests of Samos
Pinus brutia forests covering large expanses of Samos, in particular in the Ambelos range, the Kerki mountains, the southern hills and the north-eastern peninsula.

42.854 - Aegean pine woods of Chios
Remnant forests of Chios with a composition and stratification similar to those of the forests of Samos.

42.855 - Aegean pine forests of Thasos
Broad *Pinus brutia* belt on the lower reaches of Thasos, up to about 400 to 500 metres, mixed with *Pinus pallasiana* in the higher areas.

42.856 - Aegean pine woods of Samothrace
Mostly sparse *Pinus brutia* formations of the lowlands of Samothrace.

42.857 - Aegean pine forests of Rhodes
Remnant *Pinus brutia* forests of Rhodes, still represented by some relatively natural formations with rich scrub undergrowth.

42.858 - Aegean pine forests of Karpathos
Fairly extensive *Pinus brutia* forests of Karpathos, distributed, in particular, in the northern coastal area, the southern interior and the middle elevation of Kali Limni.

42.859 - Aegean pine forests of the Dodecanese
Pinus brutia formations of the islands of Simi, Kos, Leros and Ikaria.

2) **Plants:** *Pinus pinaster* ssp. *atlantica*, *Pinus pinaster* ssp. *pinaster* (=*Pinus mesogeensis*), *Pinus pinea*, *Pinus halepensis*, *Pinus brutia*.
Canarian endemic pine forests

PAL.CLASS.: 42.9

1) Forests of endemic *Pinus canariensis*, of the dry montane level at around 800 to 2000 metres (locally down to 500 and up to 2500 metres) in Tenerife, La Palma, Gran Canaria and Hierro, with *Chamaecytisus proliferus*, *Adenocarpus foliolosus*, *Cistus symphytifolius*, *Lotus campylocladus*, *L. hillebrandii*, *L. spartioides*, *Daphne gnidium*, *Juniperus cedrus*, *Micromeria* spp.; these forests, of which well-preserved examples have become rare, are the only habitat of *Fringilla teydea*, *Dendrocopos major canariensis* and *D. m. thanneri*.

Sub-types:

42.91 Canary pine-rockrose forests

Climax *Pinus canariensis* forests within the main zone of altitudinal occurrence, with an undergrowth characterised and often dominated by *Cistus symphytifolius* and comprising *Chamaecytisus proliferus*, *Lotus campylocladus*, *L. hillebrandii*, *L. spartioides*, *Juniperus cedrus*, *Bystropogon originifolius*, *Argyranthemum adauctum*.

42.92 Canary pine-dry scrub forests

Formations of dry, south-facing slopes in the lower part of the *Pinus canariensis* belt, transitional towards juniper formations and their degradation scrubs, with an undergrowth often formed by *Cistus monspeliensis*, *Euphorbia obtusifolia* ssp. *regis-jubae*, *Salvia canariensis*, *Micromeria hyssopifolia*, *Echium aculeatum*.

42.93 Canary pine-heath forests

Formations of humid, fogbound north- and north-west-facing slopes in the lower reaches of the *Pinus canariensis* belt, with an abundance of *Erica arborea* and *Myrica faya*, and occasionally with *Ilex canariensis* and *Arbutus canariensis*; epiphytic lichens are abundant, as are dense carpets of mosses, in particular, *Hypnum cupressiforme*. These woods are the main habitat of *Regulus teneriffae*.

42.94 Canary pine-broom woods

Formations of the highest altitudes of the *Pinus canariensis* belt, invaded by species of the supra-Canarian level, in particular *Adenocarpus viscosus*.

42.95 Canary pine-juniper woods

Junipereto cedri-Pinetum canariensis formations of steep, rocky slopes of high altitudes of Tenerife and La Palma.

2) **Plants:** *Pinus canariensis*, *Chamaecytisus proliferus*, *Adenocarpus foliolosus*, *Cistus symphytifolius*, *Lotus campylocladus*, *L. hillebrandii*, *L. spartioides*, *Daphne gnidium*, *Juniperus cedrus*, *Micromeria* spp.

*Endemic forests with *Juniperus* spp.*

PAL.CLASS.: 42.A2 to 42.A5 and 42.A8

1) Medium altitude forest formations dominated by *Juniperus* spp. The arborescent matorrals (32.13 and 31.3) should not be included.

Sub-types:

42.A2 - Spanish juniper woods (*Juniperon thuriferae*) - forest formations dominated by *Juniperus thuriferae* of Spain (calcareaous substrates in the supra-Mediterranean levels of the Iberian Range and neighbouring plateaux, often with *Pinus sylvestris*, *P. salzmanni*, *Juniperus hemisphaerica* and *Berberis hispanica*; enclaves on the periphery of and within the Sierra de Guadarrama, occurring both on rare local limestone deposits and in a few siliceous stations; dry, warm, rocky, calcareaous southern slopes of the Cordillera Cantabrica, between the Rio Pisuerga and the Rio...
Luna, with Juniperus nana, J. sabina, Berberis vulgaris ssp. cantabrica, Rhamnus alpinus, Viburnum lantana; gypsiferous soils of the Ebro basin, with Rhamnus lycioides; clay soils of the Campo de Montiel; Sierra Taibilla), southern France (Montagne de Rie); warm calcareous supra-Mediterranean slopes of the south-western Alps, in Drôme, Hautes-Alpes and Alpes-de-Haute-Provence, between 700 and 1200 metres; warm calcareous supra-Mediterranean slopes of the Isère valley, in the western Alps, between 300 and 500 metres; valleys in the interior of Corsica -Pinerna, Rudda, Prunicia - sometimes mixed with Pinus laricio;

42.A3 - Grecian juniper woods (Juniperetum excelsae) - forest formations dominated by Juniperus excelsa, of the Ostryo-Carpinion zone of the mountains of northern Greece (up to 900-1000m, around lake Prespa);

42.A4 - Stinking juniper woods - forest formations dominated by Juniperus foetidissima on adrets of the upper supra-Mediterranean level in Greece;

42.A5 - Syrian juniper woods - Juniperus drupacea woods of the northern slopes of Mount Parnon, Greece;

42.A8 - Macaronesian juniper woods - Juniperus cedrus formations of the high altitudes in Tenerife, La Palma, Gomera, Gran Canaria, restricted to steep rocky slopes; Juniperus phoenicea formations of Tenerife, La Palma, Hierro, Gran Canaria, La Gomera (Maytenio-Juniperion phoeniceae p.); endemic Juniperus brevifolia formations of the Azores (Juniperion brevifoliae p.).

4) The arborescent matorrals of Juniperus thurifera (32.136), Juniperus excelsa and J. foetidissima (32.133), Juniperus drupacea (32.135) and the ericoid-dominated facies of the Macaronesian Juniperus formations (31.3) are generally associated in the field, but they should not be included in this habitat type.

9570 * Tetraclinis articulata forests
PAL.CLASS.: 42.A6

1) Xero-thermophile forests of Arbor-vitae (Tetraclinis articulata); Periplocion angustifoliae: Arisaro-Tetraclinidetum articulatae, Mayteno-Periplocetum angustifoliae. Scrub formed by T. articulata should also be considered a part of this habitat.

9580 * Mediterranean Taxus baccata woods
PAL.CLASS.: 42.A72 and 42.A73

1) Woods dominated by Taxus baccata, often with Ilex aquifolium, of very local occurrence. This habitat type may have two origins: senescent phase of a beech wood or beech-fir wood, made up of clusters of Taxus after the fall of the tall species, surrounded by layered stands of beech-yew; residual Taxus stand with disappearance of the tall species, both above and in the proximity of Taxus. Habitat sub-types included:

42.A72 - Corsican yew woods - Formations of Taxus baccata, Ilex aquifolium, Buxus sempervirens restricted to cool, montane areas in the Tenda range, the San Pedrone range and the Cap Corse mountains;
42.A73 - Sardinian yew woods - *Taxus baccata* and *Ilex aquifolium* woods of the Catena del Marghine and the Mount Limbara system.
In the north and centre of Portugal there are *Taxus baccata* relicts, sometimes in small isolated formations (Serras do Gerês and Estrela), that may be included in this habitat type.

2) **Plants**: *Buxus sempervirens, Ilex aquifolium, Mercurialis perennis, Sorbus aria, Taxus baccata.*

9590
Cedrus brevifolia forests (Cedrosetum brevifoliae)

PAL.CLASS.: 42.B2

1) Forests of *Cedrus brevifolia*, endemic to the western summits of the Troodos range

2) **Plants** *Cedrus brevifolia, Quercus alnifolia, Arrhenatherum album, Cephalorrhynchus cypricus, Galium peplidifolium, Stellaria media, Lindbergella sintensii*

95A0
High oro-Mediterranean pine forests

PAL.CLASS.: 42.7

1) Balkan endemic forests of *Pinus heldreichii* or *Pinus peuce*, restricted to the southern Balkans, Northern Greece and Southern Italy. Accompaning species are *Picea abies, Pinus sylvestris, Pinus mugo* with understory including *Juniperus sibirica, Vaccinium myrtillus, Calamagrostis arundinacea, Brachypodium pinnatum, Luzula luzuloides, Luzula sylvatica, Geranium macrorhizum*.

Subtypes:

42.71 White-barked pine forests
 Local treeline formations of *Pinus heldreichii* restricted to the southern Balkans, northern Greece and southern Italy, usually open and with an undergrowth formed by stripped grasslands on dry, often stony or rocky soils.

42.72 Macedonian pine woods
 Pinus peuce formations (*Pinion peucis*), restricted to the subalpine zone of the high mountains of the Balkan peninsula south to extreme northern Greece (Voras, Varnous, Rhodope).

2) **Plants**
 42.71 – *Pinus heldreichii, Brachypodium pinnatum, Festuca penzesii, Calamagrostis arundinacea, Orthilia secunda*;
 42.72 – *Pinus peuce, Vaccinium myrillus, Luzula sylvatica, Calamagrostis arundinacea, Pinus mugo*.

Velchev, V. 2000. On the syntaxonomy of *Pinus heldreichii* communities to the Pirin mountain. Phytol. Balcanica, 6: 195-216